1马德里材料科学研究所(ICMM)。 janon14 @@ ucm.s(J.G.); hamorin@icmm.sic.s(H.A.)。材料,葡萄牙大街大学; vanovmaximem@ua.p.p); pcferreira@ua。); Paula* B.W.智能系统组。
向可持续社会的过渡正在推动绿色电子解决方案的开发,旨在产生最小的环境影响。实现此目标的一种有希望的途径是从纤维素(碳纤维中性,无毒且可回收)等生物基材料(例如纤维素)中构造电子产品。对于The Internet设备的数量迅速增长,并且已经嵌入我们生活的各个方面。在这里,展示了基于纸张的传感器电路,它们使用Triboelectric压力传感器帮助老年人使用以电子“书”形式与数字世界进行交流,这对它们更为直观。使用内部开发的基于纤维素的油墨,具有非危害溶剂的纤维素墨水,通过丝网印刷在浮动纸基板上制造。由Finger和化学修饰的纤维素之间的接触产生的Triboelectric传感器信号可以到达几伏,可以通过便携式微控制器卡并通过蓝牙传输到任何具有Internet连接的设备。除了微控制器(很容易删除)外,整个系统可以在生命的尽头进行回收。
1 青岛大学威海创新研究院电气工程学院,青岛 266000,中国 2 西安交通工程学院,西安 710300,中国 3 青岛海尔洗衣机有限公司,青岛 26000,中国 * 电子邮件:wkwj888@163.com 收稿日期:2022 年 9 月 13 日 / 接受日期:2022 年 11 月 13 日 / 发表日期:2022 年 11 月 30 日 塑料制品产量不断增加和回收利用不足,导致白色污染问题困扰全球,严重影响了生态环境、海洋生物和排水系统。此外,低功耗电子设备的广泛应用使功耗成为不可忽视的因素。因此,回收废弃的塑料袋作为摩擦纳米发电机(TENG)的摩擦材料,收集日常生活中的机械能并将其转化为持续稳定的电能,可以同时缓解白色污染和能耗两大问题。此外,利用TENG构建的自供电系统在驱动低功耗电子产品、环境监测、可穿戴设备等方面有着巨大的潜力。据此,本文概述了白色污染的概况、TENG的理论起源、工作原理和理论模型,分析了利用废旧塑料袋制造TENG的可行性,以及该自供电传感系统的应用进展,并对未来进行了展望。关键词:摩擦纳米发电机;自供电系统;废旧塑料袋;TENGs 1.引言
1纳米 - 电子中心(NET),电气工程学院,工程学院,Universiti teknologi Mara,40450 Shah Alam,马来西亚2号雪兰莪2号电气工程学院,工程学院,Teknologi teknologi Mara,Terengganu Mara,Terengun Branch,Dungun Campus,23000 Dungun funcation and nenne nanne nanne nensia,纳米技术,科学研究所(IOS),Universiti teknologi Mara,40450 Shah Alam,雪兰莪,马来西亚4电气和电子工程技术学院,马来西亚大学马来西亚大学,Hang tuah jaya,MALASKA,MELARESIA,MARARESIA INDERCENIOL,MALAKE MARANOMIAL INCERATION,MALARESIA INDERCTION,MARASIINOLIOG马来西亚槟城的Atang Pauh 6马来西亚Sabah大学工程学院,88400 Kota Kinabalu,马来西亚Sabah,马来西亚Sabah 7应用科学学院,Universiti Teknologi Mara,40450 Shah Alam,Shah Alam,Selangor,Selangor,Malaysia 8 Physemia and Malaysia school and Malaysia school and Malaysia school and Malaysia cres cres cres cres cres cres cres cres cres cres cres cres cres cres cres cres cres cres cres cres cres cres abdur,印度钦奈 Vandalur 科学技术研究所 600 048 9 马来西亚苏丹依德里斯教育大学科学与数学学院纳米技术研究中心 35900 丹戎马林 10 马来西亚敦胡先翁大学电气与电子工程学院微电子与纳米技术 - Shamsuddin 研究中心
本文介绍了一种新型的基于Aerogel的摩擦电纳米生成器(TENG),该纳米生成器(TENG)显示了能量收集和传感应用的卓越性能。基于多酰亚胺的气凝胶膜具有不同的开孔含量水平,可用作Teng的主要接触材料。制造的气凝胶膜已充分表征,以揭示开发材料的化学和机械性能。与完全致密的聚酰亚胺层且无孔隙率相比,聚酰亚胺气凝胶膜的使用显着提高了Teng的性能。这种增强是由于有效表面积的增加,气凝胶开放式电池内的电荷产生以及TENG设备的相对电容的增加所致。孔隙率从零变化到70%的开放式孔隙含量的影响表明,具有50%的气门膜显示出最高的性能,其中获得了40次峰值的峰值敞开电路电压,而峰值短路电流则获得了5 𝜇𝜇𝜇𝜇的峰值短路电流。这些值高于带有数量级的简单聚酰亚胺层的Teng的值。最后,测试了电阻载荷和电容器下提议的teng的性能。因此,这项工作为高性能teng提供了一种有效的方法。
摘要:随着科技的不断进步,用于增强现实(AR)和虚拟现实(VR)的电子产品逐渐进入大众的视野,这些电子设备的电源也受到了科学家的更多关注。与传统电源相比,摩擦纳米发电机(TENG)由于体积小、转换效率高、能耗低等优点,逐渐被用于可穿戴柔性电子产品,包括AR和VR设备等自供电传感技术中的能量收集,是AR和VR产品中最受欢迎的电源。本文首先概括了TENG的工作方式和基本理论,然后回顾了AR和VR设备中使用的TENG模块,最后总结了TENG制备的材料选择和设计方法。TENG的摩擦层可以由聚合物、金属和无机材料等多种材料制成,其中聚四氟乙烯(PTFE)和聚二甲基硅氧烷(PDMS)是最受欢迎的材料。要提高TENG的性能,必须选用合适的摩擦层材料。因此,针对不同的应用场景,TENG的设计方法对其性能起着重要作用,合理的制备材料和设计方法的选择可以大大提高TENG的工作效率。最后,总结了纳米发电机的研究现状,分析并提出了未来的应用领域,并总结了材料选择的要点。
2012 年,第一篇摩擦纳米发电机 (TENG) 论文发表,距今已有近十年,本综述简要概述了将 TENG 技术应用于关键可持续和可再生能源应用的最新技术进展。本文研究了 TENG 在可穿戴设备、波浪、风能和运输等四个关键领域的应用进展。自诞生以来,TENG 取得了巨大进步,并开发了将其应用于大量免费动能来源的方法。然而,与其他形式的能源生产相比,电力输出仍然很低(大多低于 500 W/m 2),未来的主要挑战似乎是进一步提高输出功率和电流、经济地制造先进的 TENG 以及设计 TENG 以在各种实际环境中终身使用。最后,它讨论了在这些应用领域充分发挥 TENG 潜力所面临的紧迫挑战,特别是从材料和制造的角度来看。需要指出的是,要实现基于 TENG 的设备大规模生产,还需要进行大量的研究和开发。 TENG 将在物联网 (IoT)、人机界面、机器学习应用和“净零排放”技术的未来发展中发挥重要作用。
记录的版本:此预印本的一个版本于2021年8月6日在自然通讯上发布。请参阅https://doi.org/10.1038/s41467-021-25043-2。
可穿戴电子设备,人工智能和第五代无线技术的平行演变创造了一种技术范式,有可能深刻地改变我们的生活。尽管如此,解决与可穿戴电子产品的连续,可持续和普遍的动力相关的局限性仍然是一种瓶颈,以最大程度地提高这些技术可以带来协同作用的指数良好的好处。最近的一个开创性发现表明,通过使用接触电力和静电诱导的耦合效果,互动纳米生成器(TENGS)可以有效地转化不规则的,低频率的无性生物力学能量,从身体转移到电能中,从而使电源可维持和可持续的发动机,从而提供了可维护的启用。已经利用了许多人类动议,以正确和有效地利用这种能量潜力,包括人类的行动。鞋子是日常穿着必不可少的组成部分,可以作为利用这种动力学的绝佳平台。在本文中,全面审查了基于Teng的智能电力发电鞋的最新代表性成就。我们总结了这种方法,不仅可以通过门诊运动清除生物力学能量,而且还可以通过跟踪节奏和节奏的强度来对健康参数进行生物监测,以帮助phithanotanotanotanotanotanotanotanotical fileds。这项工作提供了对理性结构设计,实用应用,场景分析以及基于Teng的智能鞋的性能评估的系统综述。此外,讨论了对即将到来的物联网时代的可持续和普遍的能源解决方案的未来开发的观点。