1 Riken Spring-8 Center,1-1-1 Kouto,Sayo,Sayo,YOOGO 679-5148,日本2日本2精确科学与技术系,大阪大学工程研究生院,2-1 Yamada-Oka,Osaka,Osaka,Osaka 565-0871,日本565-0871,日本3日本3 UniwersytetupoznaðSkiego2,PL-61614 POZNA或波兰4自由电子激光科学中心CFEL,DEUTSCHES ELEKTRONEN-SYNCHROTRON DESY,NOTKERSTER,NOTKERSTER。85,22607德国汉堡5欧洲XFEL GMBH,HOLZKOPPEL 4,22869德国Schenefeld,德国6核物理研究所6,波兰科学院核物理学院,Radzikowskiego 152,152,152,31-342 KRAKOW,波兰克拉克夫,波兰7材料材料部7材料,材料部7材料部 Nagoya, 464-8603, Japan 8 Japan Synchrotron Radiation Research Institute, Kouto 1-1-1, Sayo, Hyogo 679-5198, Japan 9 Center for Ultra-Precision Science and Technology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
使用外部刺激对来宾释放和重新捕获的精确控制是一个宝贵的目标,有可能实现新的化学纯正方式。包括分子胶囊配体核心内的氧化还原部分,以触发客人的释放和吸收,但事实证明是有效的,但是该技术仅限于某些胶囊和客人。在此,证明了来自二置,三位文和四型配体的一系列新型金属有机胶囊的构造,所有这些都包含与Fe II中心协调的氧化还原活性的Azo基团。与基于亚米吡啶的类似物相比,这种新的基于硫基吡啶的胶囊具有较大的空腔,能够封装更多庞大的客人。还原胶囊后,它们的客人被释放,然后在胶囊通过氧化再生时可以重新安装。由于氧化还原中心位于配体臂上,因此它们是模块化的,并且可以连接到各种配体核心,以变化和可预测的结构。因此,该方法显示了一种通用方法,用于设计氧化还原控制的访客释放和摄取系统。
摘要:真菌病原体是显着的破坏植物的微生物,对世界作物的产量构成了威胁。几丁质是真菌细胞壁的关键成分和可以通过特定植物受体识别的保守的MAMP(与微生物相关的分子模式),从而激活了几丁质触发的免疫力。在大米和拟南芥等植物中众所周知,特定受体对几丁质感知的分子机制在许多其他植物中也相似。成为植物病原体,真菌必须抑制几丁质触发的免疫的激活。因此,真菌病原体已经发展了各种策略,例如预防几丁质消化或干扰植物几丁质受体或几丁质信号,这些信号在大多数情况下涉及真菌蛋白的分泌。由于几丁质免疫是一种非常有效的防御反应,因此这些真菌机制被认为可以密切协调。在这篇综述中,我们首先概述了当前对金蛋白触发的免疫信号传导和用于抑制其抑制的真菌蛋白的理解。第二,我们讨论了在真菌生物营养中运行的机制,例如白粉病真菌,尤其是在模型物种podosposphaera xanthii中,这是瓜糖粉中粉状霉菌的主要因果剂。在真菌发病机理和促进粉状霉菌疾病的背景下,讨论了与免疫原性差异寡聚物的修饰,降解或隔离有关的关键作用。最后,还讨论了这种基本知识用于开发针对白粉病真菌的干预策略。
摘要:CGAS刺信信号传导是诱导I型IFN的主要途径,在防御巨型T. gondii感染中起着至关重要的作用。相比之下,T。Gondii制定了多种策略来抵消宿主防御,从而在广泛的宿主中引起严重疾病。在这里,我们证明了T. gondii Rhoptry蛋白16(ROP16)通过抑制CGA(环状GMP-AMP合酶)途径通过刺痛的多素化抑制I型干扰素信号传导。Mech-在动态上,ROP16通过信号域与STING相互作用,并抑制NLS(核定位信号)domain依赖性方式中STIN的K63连接的泛素化。conse,在Pru tachyzoites中淘汰了ROP16,促进了I型IFN的刺激介导的产生,并限制了T. gondii的复制。一起,这些发现描述了一种独特的途径,其中T. gondii利用了sting的泛素化来逃避宿主的抗寄生虫免疫,从而揭示了对宿主与寄生虫之间相互作用的新见解。
图1。多价逻辑薄膜元素带有加密。(a)蒸发诱导的自组装(EISA)CNC膜上iTO/玻璃基板上。通过精确降低NaCl溶液,CNC的手性螺距通过相对湿度控制(比例尺为1mm)调节。(b)由光子带隙(相对湿度,H和盐浓度,S)和光子能量(波长,W和极化状态,P)触发的生物多值逻辑系统的图形符号,并通过以下转换后的字母字母来解码电信号。(c)基于集成电路的光通信启用了主动手性生物介电层。特定的输入提供了光学通信,并通过在系统中调整H通过加密传输“制造”信号。
根据政府的能源转型战略,能源转型工作组对 WEM 进行了一系列重大改革,其中大部分改革将于 2023 年 10 月 1 日开始实施。这些改革包括引入安全约束的经济调度、缩短交易间隔和“关门”,以及建立新的竞争性基本系统服务框架,该框架将在市场调度过程中与能源共同优化。
先天免疫系统通过种系编码的回收物检测病原体,这些回收体与称为病原体相关的分子模式(PAMP)结合的保守病原体配体。在这里,我们考虑了一种称为效应触发的免疫(ETI)的病原体传感策略。eti涉及病原体编码的毒力因子的检测,也称为效应子。病原体产生效应子来操纵宿主,以创建复制的利基和/或阻止宿主免疫。与PAMP不同,效应子通常是多种多样且迅速发展的,因此可能是通过种系编码受体直接检测的不合适靶标。效应子通常通过检测其毒力活性间接感知。eti是病原体传感的可行策略,在包括植物在内的各种门中使用,但与简单的受体/配体pAMP检测相比,ETI的分子机制很复杂。在这里,我们调查了ETI的机制和功能,特别关注动物研究的新见解。我们表明,在整个免疫学中,可以发现许多ETI的例子可能有待发现。
先天免疫系统通过种系编码的回收物检测病原体,这些回收体与称为病原体相关的分子模式(PAMP)结合的保守病原体配体。在这里,我们考虑了一种称为效应触发的免疫(ETI)的病原体传感策略。eti涉及病原体编码的毒力因子的检测,也称为效应子。病原体产生效应子来操纵宿主,以创建复制的利基和/或阻止宿主免疫。与PAMP不同,效应子通常是多种多样且迅速发展的,因此可能是通过种系编码受体直接检测的不合适靶标。效应子通常通过检测其毒力活性间接感知。eti是病原体传感的可行策略,在包括植物在内的各种门中使用,但是与简单的受体/基于配体的PAMP检测相比,ETI的分子机制很复杂。在这里,我们调查了ETI的机制和功能,特别关注动物研究的新见解。我们表明,在整个免疫学中,可以发现许多ETI的例子可能有待发现。
摘要:肥胖和2型糖尿病(T2DM)是与严重发病率和死亡率增加有关的主要公共卫生问题。肥胖和T2DM都与脂肪症密切相关,该术语描述了脂肪组织的病理生理变化。在这篇综述中,我们强调了脂肪组织功能障碍是这些疾病病因的主要因素,因为它促进了慢性炎症,葡萄糖稳态失调以及脂肪生成受损,导致了异型脂肪和胰岛素抵抗的积累。这种功能失调的状态可以通过至少15%的体重的损失有效地改善,这与更好的血糖控制,心脏代谢疾病的可能性降低以及总体生活质量的改善相关。可以通过生活方式改良(健康饮食,常规体育锻炼)和药物治疗来实现体重减轻。在这篇综述中,我们总结了解决体重减轻的不同有效的管理策略,例如减肥手术和几类药物,即二甲双胍,GLP-1受体激动剂,木蛋白类似物和SGLT2抑制剂。这些药物通过针对肥胖和T2DM病理生理的各种机制来起作用,并且已证明它们可诱导体重显着减轻并改善T2DM肥胖个体的血糖控制。