1 SBA(基于卫星的增强系统)。包括仅在北美可用的WAA,仅在欧洲可用的EGNO,仅在日本提供的MSA。2的准确性和可靠性可能会因多径,障碍物,卫星几何形状和大气条件而导致异常。始终遵循建议的调查实践。3手持点测量精度取决于用户工作流程。为了获得最佳定位结果,建议使用外部GNSS天线和测量级范围极点。4取决于WAAS/EGNOS/MSAS系统性能5可能受大气条件,信号多径,障碍物和卫星几何形状的影响。6可能会受到大气条件,信号多径和卫星几何形状的影响。初始化可靠性会不断监控,以确保最高质量。7 1- sigma。由于传感器校准质量,温度以及局部磁性干扰的存在,准确性和可靠性可能会遭受异常。始终遵循建议的传感器校准和操作实践。8 1- sigma, @ 20 C,在50 m处至柯达灰卡。 9接收器将正常运行到–40°C,内部电池的额定值为–20°C。实际运行时间将随使用条件而变化。
在大鼠毒性研究中,建议通过确定的神经解剖标志修剪大脑以获得一致的切片。在本文中,我们描述了一种矩阵引导修剪方案,该方案使用通道重现解剖标志的冠状水平。设置阶段和验证研究均在 Han Wistar 雄性大鼠(Crl:WI(Han))上进行,10 周龄,体重 298 + 29 ( SD ) 克,使用适合体重 200 至 400 克大鼠大脑的矩阵(ASI-Instruments 1,休斯顿,德克萨斯州)。在设置阶段,我们确定了八个通道,即 6、8、10、12、14、16、19 和 21,分别匹配视交叉、额极、视交叉、漏斗、乳头体、中脑、小脑中部和小脑后部的推荐标志。在验证研究中,我们使用选定的通道修剪了 60 只大鼠的浸入固定脑,以确定通道再现解剖标志的一致性。成功率(即每个级别的预期目标的存在)范围为 89% 到 100%。如果未实现 100% 的成功率,则注意到脑修剪的偏移是朝向尾极。总之,我们开发并验证了一种大鼠脑的修剪方案,该方案允许冠状切片具有与标志引导修剪相当的广泛性、同源性和相关性,并且具有技术人员可以快速学习的优势。
我们介绍了在 ANR-TRIMET 项目框架内获得的主要结果,该项目的目标是在 10 − 6 的相对不确定性水平下闭合量子计量三角形 (QMT)。 TMQ 实验包括使用电气计量学中涉及的三种量子效应来实现欧姆定律:约瑟夫森效应 (EJ)、量子霍尔效应 (EHQ) 以及量子效应 ff 和单电子隧道效应 (SET)。目的是验证现象学常数 K J、R K、Q 的相干性这一经验对重新定义国际单位制(SI)做出了重要贡献。我们还表明,TMQ 的关闭将允许实施基本费用的新确定,例如。
