戴维·阿德霍尔德(David Aderhold)新泽西州学校管理员协会吉赛拉·阿多诺·帕特森(Gisela Adorno Paterson)公立学校女士Karen Bingert夫人新泽西州校长和主管协会Madeline Madeline Boehning夫人新泽西州新泽西州新泽西父母教师协会杰基·伯克(Jackie Burke)夫人,Esq。新泽西州县职业技术学校委员会珍妮特·菲克·新泽西州学校行政人员协会亚当·弗里德·弗里德·弗里德·弗里德·弗里德·弗里德·亨利·古德·古德·古德·新泽西州教育协会先生克里斯·赫伯先生,ESQ。新泽西州教育部专员特里纳·詹金斯女士新泽西州教育协会女士Debra Jennings女士
地理信息系统(GIS)因子在确定太阳能电池板的最佳放置和方向方面起着关键作用,以最大程度地提高阳光暴露和能源产生效率。本研究解决了屋顶特征不均匀的挑战,例如建筑18 kFUPM的屋顶特征,这可能导致阴影并减少太阳能生产。该研究采用Helioscope(基于网络的GEO软件)进行模拟来计算面板要求和能源发电潜力。使用Meteonorm和Solargis的气象数据,该分析确保了太阳能输出的准确预测。这项研究还强调了使用可靠的组件(例如Sunny Tripower 24000TL-US逆变器和Trina太阳能TSM-PD14 320模块)的使用。通过详细的模拟和分析,该系统包括十座建筑物的8,205个面板,可实现3.00兆瓦的总容量,年能量输出为5.078 gwh。该项目通过通过精确的设计方法和健壮的组件选择来优化太阳能PV系统,标志着对可持续性目标的重大进展。
克莱尔郡议会西克莱尔区当选议员 Shane Talty 议员和 Gabriel Keating 议员;克莱尔郡议会建筑师 Ruth Hurley;爱尔兰旅游局野性大西洋之路负责人 Miriam Kennedy;旅游顾问 Paul Carty;莫赫悬崖中心 DAC 董事会主席 Bobby Kerr;爱尔兰旅游局新项目经理 Fiona Monaghan;克莱尔郡议会财务会计师 Trina Rynne;克莱尔郡议会高级执行工程师 John Leahy;克莱尔郡议会环境官员 Sheila Downes;克莱尔郡议会;NWPS - 国家公园和野生动物服务局地区保护官员 Helen Carty;克莱尔郡议会旅游部门负责人 Deirdre O'Shea;莫赫悬崖中心 DAC 商务经理 John McInerney;莫赫悬崖中心 DAC 运营主管马克·奥肖内西 (Mark O'Shaughnessy);莫赫悬崖中心 DAC 销售与营销经理梅兰妮·列侬 (Melanie Lennon);莫赫悬崖中心 DAC 项目协调员希拉·布朗 (Sheila Browne)。
Alex and Holly Kowalski Anonymous Associated Bank Bank of Kaukauna Bergstrom Automotive Corporation Bergstrom Automotive Family Bill Shephard and Shannon Kennedy Boldt Family Brian and Kat Gottlieb Brieland Family Catherine Larsen Chuck and Barb Merry Community First Credit Union Corcoran Glass and Paint Curt and Melissa Detjen Family Fund Dan and Beth Flaherty Dan Van Daalwyk和JoséMoralesDave和Kim Ritzow David L.和Rita E. Nelson家族基金Donald和Janet Turner Family Donald P. Taylor Doug和Carla Salmon基金会Michael Michael Dr. Katherine and John Davis Family Kimberly-Clark Corporation Lance and Bridget Crane Mary Beth and Jud Fowler Mary Beth Nienhaus Mel Kolstad Menasha Corporation Mike and Julie Waite Miller Electric Plexus Corporation Reinhardt and Lois Sabee and the Donovan Families Fund Renee and Chad Ulman Robert and Laura Abernathy Roger and Lynn Van Vreede Ron and Ruthellyn Musil Ryan和Marissa Downs Secura Insurach Siefert家庭基金Tod Galloway纪念Mary T. Stumpf Tom和Karen Medema Trina和Keith Doxtator Wisconsin Energies
BCHM 421/422阻止细菌感染的策略2025-26 Davies Lab四个项目#1-4:细菌使用纤维胶蛋白接触并结合其定居的表面。结合会导致生物膜形成和持续感染。这些原纤维粘附素非常长(2 - 9,000个残基)多肽链,将其折叠成一串域。在粘合剂的远端是一组配体结合域,可将细菌固定在宿主身上。在霍乱的病原体弧形霍乱的示例中,细菌使用聚糖结合结构域连接到人类细胞和肽结合结构域,以锚定在定植过程中形成的生物膜上。这些相互作用可以被竞争配体结合位点竞争的特定糖和肽阻止,并可以用作反应细菌感染的试剂。在这些项目中,我们将找到更有效的阻断试剂,发现和表征新的配体结合域,并扩大我们对粘附蛋白的分析,以帮助控制一系列人类/动物病原体和农业害虫。主管:Peter L. Davies Tas:Rob Eves,Blake Soares和Trina Dykstra-MacPherson项目标题:阻止细菌感染的策略。关键字:
This report benefits from the reviews and comments of numerous experts, including Pietro Altermatt (Trina Solar), Alex Barrows (exa-watt), Volker Berkhout (Fraunhofer Institute for Energy Economics and Energy System Technology), Marcel Bial (European Solar Thermal Electricity Association (ESTELA)), Matteo Bianciotto (IHA), Rina Bohle Zeller (VESTAS), Christian Breyer (LUT), Alex Campbell (IHA), Guiseppe Casubolo (SQM), Jürgen Dersch (DLR), Alain Dollet (CNRS / PROMES), Rebecca Ellis (IHA), Gilles Flamant (PROMES-CNRS), Jérémie Geelen (Bioenergy Europe), Konstantinos Genikomsakis (ESTELA), Paul Komor (University of Colorado at Boulder), Eric Lantz (NREL/IEA Wind Task 26), Joyce Lee (GWEC), Jon Lezamiz Cortazar (Siemens Gamesa), Elvira Lopez Prados (Acciona), Angelica Marsico(ESTELA)、Gonzalo Martin(Protermosolar)、David Moser(Eurac Research)、Stefan Nowak(NET)、Werner Platzer(Fraunhofer ISE)、Manuel Quero(Sunntics)、Christoph Richter(DLR / SolarPACES)、Santa Rostoka(ESTELA)、Ricardo Sanchez(PSA)、Eero Vartiainen(Fortum Renewables Oy)、Yuetao Xie(CREEI)、Feng Zhao(GWEC)。所有观点和错误仍属于作者。
Irena感谢Dolf Gielen,Elizabeth Press,Ahmed Badr,Simon Benmarraze,Herib Blanco,Francisco Boshell,Yong Chen,Barbara Jinks和Binu Parthan(Irena)在准备这项研究的准备中。该报告受益于数量专家的评论和评论,包括Pietro Altematt(Trina Solar),Alain Dollet(CNRS / Promes),Alejandro Labanda(UNEF),Alex Barrows(Exa-Watt),Amelie Ancelle(Estela),Christoph Richter(DLR),Daniel Gudopp(Deea solutions) David Moser(Eurac Research),Eero Vartiainen(Fortum Growth Oy),Elvira Lopez Prados(Acciona),Eric Lantz(NREL),Florian HE(Eth Zurich),Jose Donoso(unef)(UNEF),Jose Luis Martinez Dalmau(Estela),Jourgen(Estela),JürgenDergenderch(Estela)(Estela) (可再生能源研究所),Lena Kitzing(DTU),Manuel Quero(Sunics),Marcel Bial(Estela),Mark Mehos(NREL),Marta Marta Martinez Sanchez(Iberdrola)(Iberdrola),Miguel Miguel Mendez Trigo(Estela),Estela(Estela),Molly Morgan(Exa-Watt),exa-Watt),Nikolai或Nikolai(nikurai)(ethland)(ethland)(ethland)。 (科罗拉多大学博尔德分校),佩德罗·迪亚斯(Solar Heation Europe),菲利普·贝特(Phillip Beiter)(IEA风),西蒙·普莱斯(Simon Price)(Exa-watt)和Rina Bohle Zeller(Vestas)。
表列表表3。1个城市信息,包括其整体和建筑物的二氧化碳排放,研究中包括的主要和次要结果以及气候缓解计划。.............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................2 Building's Energy Efficiency ....................................................................................... 39 Table 3.3电气和地区能源........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... 44表3。4财务机制............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... 49表3。5 Education and Capacity Building ................................................................................ 52 Table 3.6 Collaboration ............................................................................................................... 55 Table 4.1加拿大太阳能和Trina PV面板效率和价格..................................................................................................................................................................................................................................................................................................................................................... 67表4。 2 PV项目分解结构[253] ..................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... 67表4。 3渥太华可再生能源合作社(OREC)采用的PV项目成本[254] 4 Facility and climate data location ................................................................................ 73 Table 4. 5 PV系统评估和输入............................................................................................................................................................................................................................................................................... 75表4。1加拿大太阳能和Trina PV面板效率和价格..................................................................................................................................................................................................................................................................................................................................................... 67表4。2 PV项目分解结构[253] ..................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... 67表4。3渥太华可再生能源合作社(OREC)采用的PV项目成本[254]4 Facility and climate data location ................................................................................ 73 Table 4.5 PV系统评估和输入............................................................................................................................................................................................................................................................................... 75表4。6从RetScreen数据库采用的光伏项目的安装费用[189] ......... 76表4。7 Financial parameters .................................................................................................... 77 Table 4.8 GHG emissions data .................................................................................................... 80 Table 4.9 Uottawa PV系统的预期材料(2019年)[273]采用并调整了。 ................................................................................................................................. 84 Table 4. 10材料将材料运送到现场的运输假设........................................................................................................................................................................................................................................................................................................................................................................................................................................................... 85表4。 11 uOttawa students' distribution .................................................................................... 87 Table 4. 12 ARC building monthly electricity load and peak demand (averaged from 2017 and 2018 hourly electricity demand) ................................................................................................... 89 Table 4. 13 Desired bank power and capacity and battery properties to simulate peak demand mitigation scenarios ...................................................................................................................... 91 Table 4. 14电池电压属性和电化学模型数据............................................................................................................................................................................................................................................................................................................................................................................................................................................................. 15热属性................................................................................................................................................................................................................................................... 95表4。 3总建筑物每月预期的电力发电和消费...............................................................................................................................................................................................................................9 Uottawa PV系统的预期材料(2019年)[273]采用并调整了。................................................................................................................................. 84 Table 4.10材料将材料运送到现场的运输假设........................................................................................................................................................................................................................................................................................................................................................................................................................................................... 85表4。11 uOttawa students' distribution .................................................................................... 87 Table 4.12 ARC building monthly electricity load and peak demand (averaged from 2017 and 2018 hourly electricity demand) ................................................................................................... 89 Table 4.13 Desired bank power and capacity and battery properties to simulate peak demand mitigation scenarios ...................................................................................................................... 91 Table 4.14电池电压属性和电化学模型数据............................................................................................................................................................................................................................................................................................................................................................................................................................................................. 15热属性................................................................................................................................................................................................................................................... 95表4。 3总建筑物每月预期的电力发电和消费...............................................................................................................................................................................................................................14电池电压属性和电化学模型数据.............................................................................................................................................................................................................................................................................................................................................................................................................................................................15热属性................................................................................................................................................................................................................................................... 95表4。3总建筑物每月预期的电力发电和消费...............................................................................................................................................................................................................................每个峰缓解场景的物理特性............................................................................................................................................................................................................................................. 95表4。17 Charge Limits and Priority ........................................................................................ 96 Table 4.18 Average 2017 and 2018 Global Adjustment cost for ARC building based on the building electricity load obtained from the campus sustainability office and Ontario load from the IESO Data Directory [210] ..................................................................................................... 98 Table 4.基于IESO数据目录的19 HOEP率[210] ............................................................................................................................................................................................................................. 99表5。1渥太华大学31栋建筑物的光伏分析.......................................................................................................................................................................................................................................................................................................................................2基于电力消耗,除了发电外,九座建筑物的预期电需求抵消了...................................................................................................................4建筑物PV系统初始成本和操作和维护(O&M)成本....... 108表5。5 Financial viability results ........................................................................................... 109 Table 5.6 Cash Flow Table ........................................................................................................ 110 Table 5.7 Comparison of different PV system technology combinations ................................. 113 Table 5.8 Annual CO2 savings from the PV electricity generation and equivalent savings from various alternatives ..................................................................................................................... 114
本文的初稿之前以“实时经济学:使用私营部门数据跟踪 COVID-19 对人们、企业和社区影响的新平台”为题发布。我们感谢 Gabriel Chodorow-Reich、Jason Furman、Xavier Jaravel、Lawrence Katz、Emmanuel Saez、Ludwig Straub 和 Danny Yagan 提出的有益评论。我们还要感谢为《经济追踪》提供基础数据的企业合作伙伴,截至本版本,这些合作伙伴包括:Affinity Solutions(尤其是 Atul Chadha 和 Arun Rajagopal)、Burning Glass(尤其是 Anton Libsch 和 Bledi Taska)、Earnin(尤其是 Arun Natesan 和 Ram Palaniappan)、Homebase(尤其是 Ray Sandza 和 Andrew Vogeley)、Intuit(尤其是 Christina Foo 和 Krithika Swaminathan)、Womply(尤其是 Toby Scammell 和 Ryan Thorpe)和 Zearn(尤其是 Billy McRae 和 Shalinee Sharma)。我们非常感谢盖茨基金会的 Ryan Rippel 对启动该项目的支持,以及 Gregory Bruich 的早期对话,这些对话帮助激发了这项工作。这项工作由陈-扎克伯格倡议、比尔和梅琳达盖茨基金会、Overdeck 家族基金会以及 Andrew 和 Melora Balson 资助。该项目已获得哈佛大学 IRB 20-0586 的批准。 †Opportunity Insights 经济追踪团队由 Matthew Bell、Gregory Bruich、Tina Chelidze、Lucas Chu、Westley Cineus、Sebi Devlin-Foltz、Michael Droste、Shannon Felton Spence、Dhruv Gaur、Federico Gonzalez、Rayshauna Gray、Abby Hiller、Matthew Jacob、Tyler Jacobson、Margaret Kallus、Laura Kincaide、Cailtin Kupsc、Sarah LaBauve、Maddie Marino、Kai Matheson、Kate Musen、Danny Onorato、Sarah Oppenheimer、Trina Ott、Lynn Overmann、Max Pienkny、Jeremiah Prince、Daniel Reuter、Peter Ruhm、Emanuel Schertz、Kamelia Stavreva、James Stratton、Elizabeth Thach、Nicolaj Thor、Amanda Wahlers、Kristen Watkins、Alanna Williams、David Williams、Chase Williamson、Shady Yassin 和 Ruby Zhang 组成。
1年生命周期分析中心,工程与应用科学学院,哥伦比亚大学,纽约,纽约,纽约,10027,美国; marco.raugei@brookes.ac.uk(M.R.); mg3217@columbia.edu(M.G.); el2828@columbia.edu(E.L。)2布鲁克黑文国家实验室,跨学科科学系,纽约州奥普顿市815号建筑物,美国11973,美国3号工程,计算机和数学学院,技术,设计和环境学院,设计与环境学院W2 6LA,英国5卢特大学能源系统学院,芬兰53850 Lappeenranta; Christian.breyer@lut。Fif6民用与环境工程系,萨里大学,吉尔福德GU2 GU2 7XH,英国; s.bhattacharya@surrey.ac.uk 7环境工程与地球科学,克莱姆森大学,克莱姆森,SC 29634,美国; Madale@clemson.edu 8欧洲委员会,意大利ISPRA联合研究中心欧洲委员会; arnulf.jaeger-waldau@ec.europa.eu 9 Institutphotovoltaïqueld'elede france(ipvf),CNRS UMR 9006,18 Boulevard Thomas Gobert,91120 palaiseau,法国帕莱索; daniel.lincot@cnrs.fr 10环境研究系,圣劳伦斯大学,美国纽约州13617,美国; dmurphy@stlawu.edu 11清洁电源研究,美国加利福尼亚州纳帕第三街1541号,美国加利福尼亚州94559; marcp@cleanpower.com 12 First Solar,美国坦佩,AZ 85281,华盛顿街350号; parikhit.sinha@finferstsolar.com 13 Angus Rockett,冶金与材料工程系,科罗拉多州矿业学校305B山丘,美国伊利诺伊州街1500号,美国伊利诺伊州街1500号,美国公司80401; arockett@mines.edu 14 Inl-International Iberian纳米技术实验室,AV。MestreJoséveigas/n,4715-330 Braga,葡萄牙; sascha.sadewasser@inl.int 15 HelioSourcetech,8987 E. Tanque Verde,Suite 309,PMB216,Tucson,Tucson,AZ 85749,美国; bjs@heliosourcetech.com 16 Sunpower创始人,退休,24700 Voorhees Drive,Los Altos Hills,CA 94022,美国; dickswanson15@gmail.com 17 Amrock Group,悉尼,新南威尔士州2052,澳大利亚; pjverlinden@icloud.com 18新南威尔士大学光伏和可再生能源工程学院,新南威尔士大学,新南威尔士州2052年,澳大利亚1952年,澳大利亚19号国家主要实验室,Trina Solar,Xinbei District,changzhou 213031,中国