图1:用于使用各种植物物种(杨树,小麦,菠菜)的无叶绿体细胞系统的工作流,用于自动高通量零件表征。通过完整的叶绿体和随后的乳液的分离,是从populus×Canescens(Poplar),Spinacia oleracea(菠菜)和Triticum aestivum(小麦)中产生的无叶绿体细胞提取物。随后构建和测试了标准化植物杆级的14级组装库,包括各种调节元素。通过涉及非接触式液体处理程序(Echo 525,Cobra)的自动工作流程建立了无细胞的反应,以将无叶绿体细胞提取物与DNA模板和纳米型底物相结合。证明了叶绿体细胞提取物的翻译活性,我们首先旨在验证叶绿体CFE系统是否具有足够的
末端干旱是影响硬脂小麦的最常见和毁灭性的气候应力因素之一(Triticum Durum Desf。)全球生产。这种作物的野亲戚被认为是适应这种压力的有用等位基因的巨大潜在来源。嵌套的缔合映射(NAM)面板是用作为经常父母的摩洛哥型摩洛哥型“ nachit”生成的,该品种源自甲状腺菌素,并以其较大的晶粒尺寸而闻名。将其重新组合为三个源自双甲状腺菌,芳香霉菌和aegilops speltoides的顶级表现,总共426个近交子。在八个环境(叙利亚,黎巴嫩和摩洛哥)中评估了该NAM,在两个农作物季节中经历了不同程度的终末水分胁迫。我们的结果表明,干旱压力平均导致41%的收益率损失,而1,000内核重量(TKW)是适应它的最重要特征。具有25K特征基因阵列的基因分型导致共有的图1,678个多态性SNP,涵盖了1,723 cm与参考“ SVEVO”基因组组装相符的1,723 cm。亲属关系区分了与原始父母相匹配的三个进化枝的后代。总共将18个稳定的定量性状基因座(QTL)鉴定为控制各种性状,但独立于空转时间。最重要的基因组区域被命名为q.icd.nam-04,q.icd.nam-14和q.icd.nam-16。在第二个种质面板中进行的等位基因研究确认在所有三个基因座上携带正等位基因的平均TKW优势在干旱条件下进行了现场测试时的平均TKW优势。下面的SNP被转换为具有特异性PCR(KASP)标记的高素质等位基因,并在第三个种质集合中成功验证,在此中,在水分胁迫下,TKW的表型变化的19%。这些发现确认了关键基因座的识别,用于从野生亲戚中得出的干旱适应性,现在可以通过分子繁殖很容易利用。
结果肥料类型显着影响谷物SE浓度。与在相同的N输入水平上施用的矿物肥料相比,在使用农场肥料(FYM)的肥料(FYM)中,使用农场码(FYM)的谷物SE浓度明显更高。同样,在HMC试验中,与消化沼气和矿物肥料相比,FYM和牛浆的谷物SE浓度明显更高。与常规农作物保护相比,在QLIF试验中,有机作物保护剂的谷物SE浓度明显更高。Nue-crop和HMC试验检测到了普通小麦(Triticum aestivum)和拼写(T. Spelta)的品种之间的显着差异。在整个试验中进行的相关分析确定了拼写和正相关的产量与谷物SE浓度之间的负相关性
Gasanov Ralphreed(阿塞拜疆) 白俄罗斯国立大学二号教学楼 2 楼 203 室 09:30-09:45 山楂基因组及其对该国人口的育种价值研究 Guseynova Nazaket 巴库国立大学,阿塞拜疆 09:45-10:00 DJ-1 和硫化物蛋白在果蝇氧化应激管理中的作用 Alishova Gular、Sangeeta Chawla 约克大学,英国 10:00-10:15 硬粒小麦(Triticum durum Desf.)产量参数的聚类分析 Safarova Aliyeva Gamar 巴库国立大学,阿塞拜疆 10:15-10:30 桑蚕品种和杂交种遗传多样性研究 Ramazanova Jala、Mammadov Ayaz 西里海大学,阿塞拜疆阿塞拜疆里海地区鲟鱼的养殖特征 Rzayev Elshad,Taghiyeva Safada 阿塞拜疆养鱼场,阿塞拜疆
简介:多酚氧化酶 (PPO) 是一种双活性金属酶,可催化醌的产生。在植物中,PPO 活性可能有助于抗生物胁迫和次生代谢,但对食品生产商来说是不利的,因为它会导致产品在收获后加工过程中变色和风味特征发生变化。在小麦 (Triticum aestivum L.) 中,在碾磨过程中从谷物的糊粉层释放出的 PPO 会导致面粉、面团和最终产品变色,从而降低其价值。同源组 2 染色体上的 PPO1 和 PPO2 旁系同源基因的功能丧失突变导致小麦粒中的 PPO 活性降低。然而,有限的自然变异和这些基因的接近性使得通过重组选择极低 PPO 小麦品种变得复杂。本研究的目标是编辑 PPO1 和 PPO2 的所有副本,以大幅降低优良小麦品种中的 PPO 籽粒活性。
简介:甲状腺肥料是自然产生并含有碳的肥料。肥料是实质性的,可以添加到土壤或植物中,以提供营养并维持生长。Jeeva Amrutham由两个词制成:Jeeva和Amrutham。两者均来自梵语。“ jeeva”一词是指生命和“ Amrutham”,是指长生不老药(医学)至延长生命。根据农业观点,Jeeva Amrutham是为了作物生命。这是增加微生物计数的最佳文化。jeeva amrut是一种微生物培养物,主要是由牛粪和牛尿液制成的,通常用于有机农业中,以满足农作物的营养需求。已经证明,在这种稻米(Oryza sativa L.)中使用Jeeva Amrut对产量及其质量更好。jeeva amrut可用于许多农作物(例如小麦(Triticum aestivum),玉米(Zea Mays L.)等。新鲜制备的Jeeva Amrutham本质上是酸性的。
小麦(Triticum aestivum L.)是印度第二重要的谷物作物,在该国的粮食和营养安全中起着至关重要的作用。近55%的世界人口取决于小麦,约有20%的卡路里摄入量。这是该国的主要食品谷物之一,也是北印度人民的主食,人们偏爱帕皮蒂。印度人民的各种环境条件和粮食习惯支持三种类型的小麦(面包,硬质和鸡皮)的种植。其中,面包小麦贡献了约95%的总产量,而另外04%来自硬脂小麦,近1%来自Dicoccum。印度的小麦作物在六个不同的农业气候区(表1)下种植,其中构成两个区域的印度恒河平原(IGP),即;西北平原区(NWPZ)和东北平原区(NEPZ)形成主要的小麦道,其次是中央区(CZ)和半岛区(PZ)。
CRISPR/Cas 技术近期已成为植物基因功能研究和作物改良的首选分子工具。小麦是一种全球重要的主粮作物,其基因组已被充分注释,使用基因组编辑技术(如 CRISPR/Cas)有很大空间改善其重要的农业性状。作为本研究的一部分,我们针对六倍体小麦 Triticum aestivum 中的三个不同基因:春季品种 Cadenza 中的 TaBAK1-2 以及冬季品种 Cezanne、Goncourt 和 Prevert 中的 Ta- eIF4E 和 Ta-eIF(iso)4E。已成功生成所有目标基因的携带 CRISPR/Cas 诱导的插入/缺失的原代转基因系。由于冬小麦品种通常不太适合遗传转化,本研究中介绍的冬小麦转化和基因组编辑的成功实验方法将引起研究该作物的研究界的兴趣。
1. 引言 小麦 ( Triticum aestivum L.) 是种植最广泛的谷物(与水稻和玉米一起),是世界 40% 人口的主要营养来源 (Asseng 等人,2019 年)。根据国际谷物理事会 (https://www.igc.int/en/default.aspx) 的数据,2021/2022 年小麦产量为 7.81 亿吨(约 2.2 亿公顷),占世界谷物产量的 30%。全球近 70% 的小麦产量用于食用,其他用于动物饲料和工业加工。小麦粒提供全球总膳食热量的 20% 和蛋白质的 25%。由于预计到 2050 年世界人口将超过 100 亿(https://www.fao.org/home/en),全球对小麦的需求将需要增加约 70% 才能确保满足人类的营养需求(Di Benedetto 等人,2017 年;Zhang 等人,2018 年;Zandalinas 等人,2021 年)。然而,干旱及其与除草剂的结合等主要非生物胁迫导致的粮食产量/质量损失对农业造成了重大损害,
摘要食品排毒中的抗氧化剂可以使细胞活性氧(ROS)和保护生物体。类黄酮是自然界重要的抗氧化剂起源之一,具有各种促进健康的功能,并且是模型和医疗植物中的热门研究主题。但是,主要粮食作物的小麦(Triticum Aestivum L.)的进展需要赶上。在这里,我们收集了200多个现代中国小麦品种,并分析了它们的类黄酮。一些小麦类黄酮在维生素C上显示出较高的ROS-氧化活性,但它们在谷物中的含量约为幼苗(小麦草)的1/20。小麦草的类黄酮提取物(很少)以剂量依赖性和性别特异性的方式成功拉长了模型动物的寿命(果蝇Melanogaster,W 118)。我们表征了主要的类黄酮和孤立的品种,积累了更多类黄酮。此外,茉莉酸(JA)处理诱导类黄酮生物合成,产生更多的类黄酮和较高的抗氧化电位。这项工作为有希望的小麦品种提供了信息,并采取了进一步的增强策略,以增强促进健康的潜力。