在这项工作中,我们考虑了包含零零模式和主要零模式的超导体 - 症状杂种,并探索其在Majorana极化中的特征。尤其是由于定义和混乱而考虑的零能量状态,这似乎很可能是实验场景。我们表明,即使在微不足道的零能量状态增殖时,Majorana极化也能够表征拓扑相变和Majorana零模式的出现。值得注意的是,Majorana极化继承了有关空间相关性的直接信息,这是区分Majoraana和Trivial零模式的关键。我们证明了Majorana极化在正常抗压器连接和超导体 - 正常 - 责任的Josephson连接方面的实用性。我们的结果支持将主要极化为真实空间拓扑指标的解释。
在Eliot等人的《综合评论》的评论中。(2021),我们完全遵守以极端的二元形式拒绝“性二态”概念。但是,我们批评作者的极端立场,并认为大脑中的性别/性别差异远非“微不足道”和“不太可能是有意义的”。我们的主要论点是指可能带来有意义的行为后果的小效应的重要性,以及几种与性别/性别相关的非二元性别/性别相关因素,这些因素可能比性别/性别更好地解释了个体差异本身,并且已经证明在许多精神和NEU Rodevencipmental疾病的病因学中都起着重要的作用。我们得出的结论是,生物心理社会方法比目前更好地理解大脑中的性别/性别差异的关键。
利用其电子结构的特性来观察独特的物理现象,例如手性[15–17]和轴引力异常、[18]圆形光电效应、[19–20]手性声波、[21–22]表面态增强的埃德尔斯坦效应[23]或最近提出的手性霍尔效应。[24]大多数这些效应的观察取决于是否可以轻松访问WSM的拓扑电子态。在这方面,抑制非拓扑(平凡)表面态以及修改费米能级位置以获得所需费米面拓扑的能力将允许充分揭示拓扑表面态对物理可观测量的作用,此外,还可以按需构造费米面以利用电、声或光可测输出。到目前为止,电子结构的多样性是通过探索不同的 WSM 实现的,但对同一材料中拓扑能带形状和大小的真正控制仍然难以实现,主要是因为缺乏自下而上的超高真空合成方法,无法控制表面终止和费米能级位置,例如通过掺杂或应变。需要克服这一挑战才能实现费米能级设计的韦尔半金属异质结构,从而产生大量新平台来探索基于拓扑的基本现象和设备应用。在这项工作中,我们展示了 I 型韦尔半金属 NbP 电子结构的两种显著修改,这得益于成功的外延薄膜生长合成路线。 [25] 首先,由于表面悬空键被有序磷终端饱和,NbP 的蝴蝶结状(平凡)表面态被完全抑制,表现为(√2×√2)表面重构。其次,通过用 Se 原子化学掺杂表面,费米能级发生约 + 0.3 eV(电子掺杂)的大幅偏移,同时保留了原始的 NbP 能带结构特征,从而首次在实验中可视化了远高于 Weyl 点的拓扑能带色散,并强调了通过分子束外延过程中的表面化学掺杂可以实现的大费米能级可调性。我们的工作为实现最近的理论提议开辟了可能性,例如依赖于纯拓扑
其电子结构的特性观察到独特的物理现象,例如手性[15-17]和轴向重力异常,[18]圆形光钙效应,[19-20]手性声波,[21-22]表面状态增强的Edelstein效应[23]或最近提出的Chiral Hall-Chiral Hall-Hall-Hall-Hall-Hall-Hall-Hall-Hall-feff。[24]大多数这些效果的观察取决于WSM的拓扑结构是否可以轻松访问。In this regard, the ability to sup- press non-topological (trivial) surface states, as well as to modify the Fermi-level posi- tion to get a desired Fermi surface topology, would allow full access to unveil the role of topological surface states on physical observables, and, in addition, to construct on-demand Fermi-surfaces to harness electrical, acoustic or optical measurable outputs.到目前为止,通过探索不同的WSM来实现电子结构的多样性,但是对同一材料中拓扑带的形状和大小的真实控制仍然存在,这主要是由于缺乏自下而上的超高维库姆合成方法,从而可以控制表面终端和Fermi-Level的位置,以通过dopsing或Fermi-Level的位置来控制。需要克服这一挑战,以实现Fermi级工程的Weyl Semimetal异质结构,从而导致了众多的新型平台,以探索基于拓扑的基本质量和设备应用。在这项工作中,我们展示了I型Weyl Semimetal NBP的电子结构的两个引人注目的修改,它们由于成功的外延薄膜生长合成途径而变得可访问。[25]首先,由于有序的磷末期表面悬挂键的饱和,因此获得了NBP的弓形状(琐碎)表面状态的完全抑制,这表现在A(√2×2×√2)表面重构中。第二,通过化学对表面进行化学掺杂,fermi-Energy经历了大约 + 0.3 eV(电子掺杂)的实质转移,同时保留原始的NBP NBP的谱带特征,从而使拓扑范围的范围优点和点亮点能够达到较大的范围,从而实现了第一个实验性的视觉效果,并实现了范围的范围,并实现了范围的范围,并实现了范围的范围。分子束外延过程。我们的工作打开了实现最新理论建议的可能性,例如依赖纯拓扑>
Nomenclature for acyclic compounds only (trivial and IUPAC), DBE, hybridization(sp", n= 1,2,3) of C, N, O, halogens, bond distance, bond angles, VSEPR, shapes of molecules, inductive and field effects, bond energy, bond polarity and polarizability, dipole moment, resonance, resonance energy, steric inhibition of resonance,过度结合,𝞹 -M.环,带电的系统3,4,5,7环,融合点,熔点,沸点,氢化热,燃烧热,氢键(内部和分子间),冠 - 酸,酸度的概念,碱性反应中间体:碳定位,碳纤维,自由基,卡宾和硝基的结构和稳定性。
图4。替代物相对位置与数据簇的相对位置的四个可能性。黑色箭头指示超平面的正常向量,指向与正标相关的区域。在情况1中,两个平均向量通过超平面正确分类。在情况2和3中,只有一个平均向量中的一个被正确分类。情况4是微不足道的,因为没有正确分类的均值向量,导致微不足道的覆盖范围和有效性cobσ+1 = vabσ -1 =0。
摘要 - 近年来,大型语言模型(LLMS)在各种任务中表现出很大的能力,包括问题回答,算术问题解决问题和诗歌写作等。Although research on LLM-as-an-agent has shown that LLM can be applied to Reinforcement Learning (RL) and achieve decent results, the extension of LLM-based RL to Multi-Agent System (MAS) is not trivial, as many aspects, such as coordina- tion and communication between agents, are not considered in the RL frameworks of a single agent.为了激发有关基于LLM的MARL的更多研究,我们在这封信中调查了现有的基于LLM的单一代理和多代理RL框架,并为未来的研究提供了潜在的研究方向。特别是,我们专注于具有共同目标和交流的多个代理的合作任务。我们还考虑了框架中语言组件启用的人类/在线场景。