近年来,随着社交媒体平台的繁荣,表情包逐渐成为网络交流的一部分。因此,检测表情包是否对个人或组织具有冒犯性对于确保互联网内容的多样性和可持续性至关重要。对表情包进行分类是否为恶意内容是一项具有挑战性的任务。此外,目前已经有很多工作集中在英语上(Truong 和 Lauw,2019 年;Xu 等,2019 年;Cai 等,2019 年),但针对泰米尔语的研究很少。泰米尔语表情包分类共享任务填补了这一空白。此共享任务的目标是检测从社交媒体平台收集的表情包是否为恶意内容。每个表情包都标有恶意或非恶意类别。此外,每张图片都嵌入了泰米尔语和拉丁字母的字幕转录。这是一个多模态分类任务,给定图像和文本对,系统必须将此对分类为 troll 或非 troll 类。在本文中,我们探索了一种用于泰米尔语 meme 分类的多模态转换器。根据图像和文本的特征,
我们感谢斯坦福大学医院为数据访问提供便利。作者感谢阿尔弗雷德·P·斯隆基金会 (2022-17182)、JPAL 医疗保健交付计划和麻省理工学院 SHASS 的支持。该实验已在 AEA 注册中心预注册,编号为 AEARCTR-0009620。预分析计划可在 SSR 注册 9620 和 SSR 注册 8799 处获得。该项目受益于与多位放射科医生的合作,包括斯坦福大学的 Matthew Lungren、Curtis Langlotz 和 Anuj Pareek 博士、西奈山医院的 Etan Dayan 和 Adam Jacobi 博士、VinBrain 的 Steven Truong 和 VINMEC 的几位放射科医生,以及 USARAD、Vesta Teleradiology 和 Advanced Telemed 的远程放射科医生。我们感谢 Daron Acemoglu、David Autor、David Chan、Glenn Ellison、Amy Finkelstein、Chiara Farronato、Drew Fudenberg、Paul Joskow、Bentley MacLeod、Whitney Newey、Pietro Ortoleva、Paul Oyer、Ariel Pakes、Alex Rees-Jones、Frank Schilbach、Chad Syverson 和 Alex Wolitzky 提供的有益对话、评论和建议。Oishi Banerjee、Ray Huang、Andrew Komo、Manasi Kutwal、Angelo Marino 和 Jett Pettus 提供了宝贵的研究协助。本文表达的观点为作者的观点,并不一定反映美国国家经济研究局的观点。
Matthew D. Elias 医学博士;Dongngan T. Truong 医学博士;Matthew E. Oster 医学博士、公共卫生硕士;Felicia L. Trachtenberg 博士;Xiangyu Mu、理学硕士;Pei-Ni Jone 医学博士;Elizabeth C. Mitchell 医学博士;Kirsten B. Dummer 医学博士;S. Kristen Sexson Tejtel 医学博士、博士、公共卫生硕士;Onyekachukwu Osakwe 医学博士;Deepika Thacker 医学博士;Jennifer A. Su 医学博士;Tamara T. Bradford 医学博士;Kristin M. Burns 医学博士;M. Jay Campbell 医学博士;Thomas J. Connors 医学博士;Laura D'Addese 医学博士;Daniel Forsha 医学博士;Olivia H. Frosch 医学博士;Therese M. Giglia 医学博士;Lauren R. Goodell、理学学士;Stephanie S. Handler 医学博士;Keren Hasbani 医学博士; Camden Hebson 医学博士;Anita Krishnan 医学博士;Sean M. Lang 医学博士;Brian W. McCrindle 医学博士、公共卫生硕士;Kimberly E. McHugh 医学博士;Lerraughn M. Morgan 博士;R. Mark Payne 医学博士;Arash Sabati 医学博士;Eyal Sagiv 医学博士、哲学博士;Yamuna Sanil 医学博士;Faridis Serrano 哲学博士;Jane W. Newburger 医学博士;Audrey Dionne 医学博士;儿科心脏网络 MUSIC 研究调查员
关于赛马更新赛马更新由纽约州米尔伍德的 HRU 出版公司所有,将于秋季至春末的周五和周日出版。HRU 将于初夏至秋季增加周三版,每周出版 3 天,并将在全年重大新闻发布时增加版本。编辑:Dave Briggs 副主编:Debbie Little 编辑设计师:Sieu Truong 后期制作:Dave Landry 技术服务:Brian Fuller 平面设计、广告和投放:Lisa Bihuniak 广告销售:Wilma Van Vaerenbergh 广告销售/问题联系人 结果和统计编辑:Lisa Duong 和 Lucy Duong 创始人:Bill Finley 贡献者:Claus Andersen、Garnet Barnsdale、Tim Bojarksi、Murray Brown、Jerry Connors、Frank Cotolo、Paul Delean、Bill Finley、Joe FitzGerald、Dean Gillette、Adam Hamilton、Thomas Hedlund、Bill Heller、Bob Heyden、Dean Hoffman、Victoria Howard、Melissa Keith、Dave Landry、Lauren Lee、Dave Little、Debbie Little、Chris Lomon、David Mattia、Trey Nosrac、Tom Pedulla、Andrea Pietrzak、James Platz、Bob Roberts、Sandra Snyder、Brett Sturman、Jay Wolf 等(查看所有贡献者) 这里) 。
d28 Maja Kadic Tushara Sadasivuni病毒化Maximilian Arendale,Brandon Chung,Peter Kim,Aneesh Pallapolu D29 Newton Pham Tushara Sadasivuni和In-In Invan Loh,Nethmee Perara dawawate。 Christian Spencer,Abraham Ochoa D30 Komal Ganta Tushara Sadasivuni Tessrae(Scrambler密码)KOI Steward,Junyeong哦,Yesenia Hurtado,Julian Hernandez D31 Joshua投票移动应用程序Osaid Zeyad,Trinity Gordon,Jared Stewart,Andy Kang D32 James Parker Tushara Sadasivuni政策政策投票移动应用程序Kamil Elwawi,Khang Truong,Sofia Lug-Bob-Bobonilla,Christophler, D33 Steven Ton Tushara Sadasivuni TimeSync Abdul Fawy, Aqra Qadeer, Dylan Trejo, Elaf Mustafa, Lorry Hoang D34 Zian Chowdhury Tushara Sadasivuni Care Hub Ngoc Minh Thy Nguyen, Steven Tea,Andy Ha,Abdul-Malik Mohammed D35 Richard Duel Tushara sadasivuni预算叮咬Anvar Suleyman,Zoe Cryton,Christopher Baez,Joe Yonathan,Mitchell Bailey Bailey D36 Ritik Patela Tushara Tushara Tushara Sadla废料Ri Merritt,Jae Jeong,Ryan Tran,Robbie Jr Owivry D37 Karrim Muhammad
肝脏是细胞和基因治疗以及基因编辑的首选器官,因为遗传性疾病众多且常常危及生命。已证明酪氨酸血症小鼠作为模型生物的 HDR 可以纠正该疾病,尽管不诱导 DSB 的同源重组效率非常低(Paulk 等人,2010 年;Junge 等人,2018 年)。在类似的小鼠模型中,通过流体动力学 DNA 注射(Yin 等人,2014 年)和非病毒 Cas9 mRNA 与腺相关病毒 (AAV) 载体介导的 HDR 模板递送相结合(Yin 等人,2016 年)证明了 CRISPR/Cas9 介导的表型拯救。AAV 载体已成为肝脏的基因递送载体,据报道在人体临床试验中具有令人印象深刻的治疗效果(Nathwani 等人,2014 年)。最近,在一个载体上编码化脓性链球菌 Cas9 (SpCas9) 表达盒,在另一个载体上编码引导 RNA (gRNA) 和修复模板的双 AAV 载体系统的应用,逆转了新生小鼠鸟氨酸转氨甲酰酶基因的突变 ( Yang et al., 2016 )。这种体内基因编辑工具在两个载体上的分段归因于 AAV 的拟议包装尺寸限制,即 4.9 kb ( Grieger and Samulski, 2005 ) 至 5 kb ( Wu et al., 2010 )。两种不同的 AAV 载体共同递送是可行的,每种载体编码所需成分的一部分,这些成分在细胞内通过转剪、同源重组或内含肽重新结合( Truong 等人, 2015 ),但在体内发生率较低( Xu 等人, 2004 )。
∗ 我们感谢斯坦福大学医院为数据访问提供便利。作者感谢阿尔弗雷德·P·斯隆基金会 (2022-17182)、JPAL 医疗保健交付计划和麻省理工学院 SHASS 的支持。该实验已在 AEA 注册表上预先注册,编号为 AEARCTR-0009620。预分析计划可在 SSR 注册 9620 和 SSR 注册 8799 处获得。† Agarwal:麻省理工学院和 NBER 经济学系,电子邮件:agarwaln@mit.edu。Moehring:普渡大学丹尼尔斯商学院,电子邮件:moehring@purdue.edu。Rajpurkar:哈佛医学院生物医学信息学系,电子邮件:pranav_rajpurkar@hms.harvard.edu。Salz:麻省理工学院和 NBER 经济学系,电子邮件:tsalz@mit.edu。该项目受益于与多位放射科医生的合作,包括斯坦福大学的 Matthew Lungren 博士、Curtis Langlotz 博士和 Anuj Pareek 博士、西奈山医院的 Etan Dayan 博士和 Adam Jacobi 博士、VinBrain 的 Steven Truong 和 VINMEC 的几位放射科医生以及 USARAD、Vesta Teleradiology 和 Advanced Telemed 的远程放射科医生。我们感谢 Daron Acemoglu、David Autor、David Chan、Glenn Ellison、Amy Finkelstein、Chiara Farronato、Drew Fudenberg、Paul Joskow、Bentley MacLeod、Whitney Newey、Pietro Ortoleva、Paul Oyer、Ariel Pakes、Alex Rees-Jones、Frank Schilbach、Chad Syverson 和 Alex Wolitzky 提供的有益对话、评论和建议。Oishi Banerjee、Ray Huang、Andrew Komo、Manasi Kutwal、Angelo Marino 和 Jett Pettus 提供了宝贵的研究协助。
∗ 我们感谢斯坦福大学医院为数据访问提供便利。作者感谢阿尔弗雷德·P·斯隆基金会 (2022-17182)、JPAL 医疗保健交付计划和麻省理工学院 SHASS 的支持。该实验已在 AEA 注册表上预先注册,编号为 AEARCTR-0009620。预分析计划可在 SSR 注册 9620 和 SSR 注册 8799 处获得。† Agarwal:麻省理工学院和 NBER 经济学系,电子邮件:agarwaln@mit.edu。Moehring:麻省理工学院斯隆管理学院,电子邮件:moehring@mit.edu。Rajpurkar:哈佛医学院生物医学信息学系,电子邮件:pranav_rajpurkar@hms.harvard.edu。Salz:麻省理工学院和 NBER 经济学系,电子邮件:tsalz@mit.edu。该项目受益于与多位放射科医生的合作,包括斯坦福大学的 Matthew Lungren 博士、Curtis Langlotz 博士和 Anuj Pareek 博士、西奈山医院的 Etan Dayan 博士和 Adam Jacobi 博士、VinBrain 的 Steven Truong 和 VINMEC 的多位放射科医生,以及 USARAD、Vesta Teleradiology 和 Advanced Telemed 的远程放射科医生。我们感谢 Daron Acemoglu、David Autor、David Chan、Glenn Ellison、Amy Finkelstein、Chiara Farronato、Drew Fudenberg、Paul Joskow、Bentley MacLeod、Whitney Newey、Pietro Ortoleva、Paul Oyer、Ariel Pakes、Alex Rees-Jones、Frank Schilbach、Chad Syverson 和 Alex Wolitzky 提供的有益对话、评论和建议。Oishi Banerjee、Ray Huang、Andrew Komo、Manasi Kutwal、Angelo Marino 和 Jett Pettus 提供了宝贵的研究协助。
∗ 我们感谢斯坦福大学医院为数据访问提供便利。作者感谢阿尔弗雷德·P·斯隆基金会 (2022-17182)、JPAL 医疗保健交付计划和麻省理工学院 SHASS 的支持。该实验已在 AEA 注册表上预先注册,编号为 AEARCTR-0009620。预分析计划可在 SSR 注册 9620 和 SSR 注册 8799 处获得。† Agarwal:麻省理工学院和 NBER 经济学系,电子邮件:agarwaln@mit.edu。Moehring:麻省理工学院斯隆管理学院,电子邮件:moehring@mit.edu。Rajpurkar:哈佛医学院生物医学信息学系,电子邮件:pranav_rajpurkar@hms.harvard.edu。Salz:麻省理工学院和 NBER 经济学系,电子邮件:tsalz@mit.edu。该项目受益于与多位放射科医生的合作,包括斯坦福大学的 Matthew Lungren 博士、Curtis Langlotz 博士和 Anuj Pareek 博士、西奈山医院的 Etan Dayan 博士和 Adam Jacobi 博士、VinBrain 的 Steven Truong 和 VINMEC 的几位放射科医生,以及 USARAD、Vesta Teleradiology 和 Advanced Telemed 的远程放射科医生。我们感谢 Daron Acemoglu、David Autor、David Chan、Glenn Ellison、Amy Finkelstein、Drew Fudenberg、Paul Joskow、Whitney Newey、Pietro Ortoleva、Paul Oyer、Ariel Pakes、Alex Rees-Jones、Frank Schilbach、Chad Syverson 和 Alex Wolitzky 提供的有益对话、评论和建议。Oishi Banerjee、Andrew Komo、Manasi Kutwal、Angelo Marino 和 Jett Pettus 提供了宝贵的研究协助。
微生物群落的宏基因组测序产生了来自未知的微生物的简短DNA读数(Handelsman,2004),导致需要基于参考数据集的分类学识别。一种方法是从分类学上识别读取并总结结果以获得样本的分类学概况,显示了分类群体的相对丰度。但是,尽管有成熟的读取分类和分析工具的可用性,但基准测试揭示了现有方法的准确性的主要差距(McIntyre等人。,2017年; Meyer等人。,2019年; Sczyrba等。,2017年; Ye等。,2019年)。精确的识别通常会受到查询的新颖性与全基因组参考数据集和模棱两可的匹配的阻碍。此外,对大量基因组进行搜索是计算要求的。分类学识别方法采用各种策略,包括K -Mer匹配(Ames等人,2013年; Ounit等。,2015年;伍德等。,2019年; Lau等。,2019年; Lu等。,2017年),阅读映射(Zhu等人,2022),基于标记的对准(Liu等人。,2011年;米兰等。,2019年; Segata等。,2012年; Sunagawa等。,2013年)和系统发育放置(Asnicar等人。,2020年; Shah等。,2021; Truong等。,2015年)。无论如何,它们本质上都搜索了样本中的读数和参考集之间的匹配。,2017年),尤其是在众所周知的微生物栖息地(如海水或土壤)中(Pachiadaki等人。,2019年)。挑战是地球微生物多样性的很大一部分缺乏参考数据集中的近距离代表(Choi等人因此,大多数方法