1 N. H. D. Khang,T。Shirokura,T。Fan,M。Tahahashi,N。Nakatani,D。Kato,Y。Miyamoto,2 H. Wu,D。Turan,Q。Pan,C.-Y. Yang,G。Wu。 下巴,H.-J。 Lin,C.-H。莱,张,M。Jarrahi, 3 K. Gary,C。 4 Y. J. A. b。 Huai,18(6),33(2008)。 5 W.-G。 Wang,M。Li,St.Eageman和C. L. 6 T. Kawahara,K。Ito,R。Take, 7 A. 7 A. 8 A. J. Sinova,St.O。O. Valenzuela,J。Wunderlich,C。H。Back,1213(2015)。 10 10 J. E. E. 11 K. Gary,I。M。Miron,C。 12 C. O. Avci。 A. Katine,应用1092 H. Wu,D。Turan,Q。Pan,C.-Y.Yang,G。Wu。 下巴,H.-J。 Lin,C.-H。莱,张,M。Jarrahi, 3 K. Gary,C。 4 Y. J. A. b。 Huai,18(6),33(2008)。 5 W.-G。 Wang,M。Li,St.Eageman和C. L. 6 T. Kawahara,K。Ito,R。Take, 7 A. 7 A. 8 A. J. Sinova,St.O。O. Valenzuela,J。Wunderlich,C。H。Back,1213(2015)。 10 10 J. E. E. 11 K. Gary,I。M。Miron,C。 12 C. O. Avci。 A. Katine,应用109Yang,G。Wu。下巴,H.-J。 Lin,C.-H。莱,张,M。Jarrahi, 3 K. Gary,C。 4 Y. J. A. b。 Huai,18(6),33(2008)。 5 W.-G。 Wang,M。Li,St.Eageman和C. L. 6 T. Kawahara,K。Ito,R。Take, 7 A. 7 A. 8 A. J. Sinova,St.O。O. Valenzuela,J。Wunderlich,C。H。Back,1213(2015)。 10 10 J. E. E. 11 K. Gary,I。M。Miron,C。 12 C. O. Avci。 A. Katine,应用109下巴,H.-J。Lin,C.-H。莱,张,M。Jarrahi, 3 K. Gary,C。 4 Y. J. A. b。 Huai,18(6),33(2008)。 5 W.-G。 Wang,M。Li,St.Eageman和C. L. 6 T. Kawahara,K。Ito,R。Take, 7 A. 7 A. 8 A. J. Sinova,St.O。O. Valenzuela,J。Wunderlich,C。H。Back,1213(2015)。 10 10 J. E. E. 11 K. Gary,I。M。Miron,C。 12 C. O. Avci。 A. Katine,应用109Lin,C.-H。莱,张,M。Jarrahi,3 K. Gary,C。 4 Y. J. A. b。 Huai,18(6),33(2008)。 5 W.-G。 Wang,M。Li,St.Eageman和C. L. 6 T. Kawahara,K。Ito,R。Take, 7 A. 7 A. 8 A. J. Sinova,St.O。O. Valenzuela,J。Wunderlich,C。H。Back,1213(2015)。 10 10 J. E. E. 11 K. Gary,I。M。Miron,C。 12 C. O. Avci。 A. Katine,应用1093 K. Gary,C。4 Y. J.A. b。 Huai,18(6),33(2008)。5 W.-G。 Wang,M。Li,St.Eageman和C. L. 6 T. Kawahara,K。Ito,R。Take, 7 A. 7 A. 8 A. J. Sinova,St.O。O. Valenzuela,J。Wunderlich,C。H。Back,1213(2015)。 10 10 J. E. E. 11 K. Gary,I。M。Miron,C。 12 C. O. Avci。 A. Katine,应用1095 W.-G。 Wang,M。Li,St.Eageman和C. L.6 T. Kawahara,K。Ito,R。Take, 7 A. 7 A. 8 A. J. Sinova,St.O。O. Valenzuela,J。Wunderlich,C。H。Back,1213(2015)。 10 10 J. E. E. 11 K. Gary,I。M。Miron,C。 12 C. O. Avci。 A. Katine,应用1096 T. Kawahara,K。Ito,R。Take,7 A. 7 A.8 A.J. Sinova,St.O。O. Valenzuela,J。Wunderlich,C。H。Back,1213(2015)。10 10 J. E. E.11 K. Gary,I。M。Miron,C。 12 C. O. Avci。 A. Katine,应用10911 K. Gary,I。M。Miron,C。12 C. O. Avci。A. Katine,应用109A. Katine,应用10913 N. H. D. Khang和P. N. Hai,应用物理信函117(25),252402(2020)。14 Y. Takahashi,Y。Takeuchi,C。Zhang,B。Jinnai,S。Fukami和H. Ohno,应用物理信函114(1),012410(2019)。15G.Mihajlović,O。Mosendz,L。Wan,N。Smith,Y。Choi,Y。Wang和J.16 S. Fukami,T。Anekawa,C。Zhang和H. Ohno,自然纳米技术11(7),621(2016)。17 Y.-T。 Liu,C.-C。黄,K.-H。 Chen,Y.-H。黄,C.-C。 Tsai,T.-Y. Chang和C.-F。 PAI,物理审查应用了16(2),024021(2021)。17 Y.-T。 Liu,C.-C。黄,K.-H。 Chen,Y.-H。黄,C.-C。 Tsai,T.-Y.Chang和C.-F。 PAI,物理审查应用了16(2),024021(2021)。Chang和C.-F。 PAI,物理审查应用了16(2),024021(2021)。
2。Wu,Y.-T。; Kumbhar,S。; Tsai,R.-F。; YANG,Y.-C。; Zeng,W.-Q.; W.-C。Hsu; Chiang,Y.-W。;杨,t。;* lu,i-c。;*王,Y.-H。* acs org。inorg。au,2024,4,306。“操纵增强电化学水氧化的速率和过电势:含有非处以生成双(Benzimidazole)吡唑啉配体的钴催化剂的机械见解”3。3。Lee,Z.-H。; Lin,P。C。; Yang,T。* J. Chin。 化学。 Soc。 2023,70(5),1095。 “配体的逆设计使用由数据驱动的配体强度度量半监督的深生成模型” 4. HSU,W.-C。; Zeng,W.-Q. ; lu,I.-C。* Yang,t。;* Wang,Y.-H。* Chemsuschem。 2022,E202201。 “用于均匀水氧化的双核钴络合物:通过氧化还原非无纯配体进行调整和过电势”5。 Yang,T。;* Berry,J。F.* J. Chem。 理论计算。 2018,14,3459。 “计算网格上的数值核第二个衍生物:复杂分子系统上的启用和加速频率计算”(CO)首次撰写的出版物6。 Taylor,M。G。; ⊥Yang,t。; lin,s。; ⊥nandy,a。;珍妮特(J. P.) Duan,C。; Kulik,H。 J. * J. Phys。 化学。 A,2020,124,3286。 “看见是相信的:来自机器学习模型结构预测的实验性旋转状态”,这些作者同样贡献了7。 黄,M。; ⊥Yang,t。; paretsky,J。; Berry,J.F。;* Schomaker,J。M.* J. am。 化学。 Soc。 2017,139,17376。 am。Lee,Z.-H。; Lin,P。C。; Yang,T。* J. Chin。化学。Soc。2023,70(5),1095。“配体的逆设计使用由数据驱动的配体强度度量半监督的深生成模型” 4.HSU,W.-C。; Zeng,W.-Q. ; lu,I.-C。* Yang,t。;* Wang,Y.-H。* Chemsuschem。 2022,E202201。 “用于均匀水氧化的双核钴络合物:通过氧化还原非无纯配体进行调整和过电势”5。 Yang,T。;* Berry,J。F.* J. Chem。 理论计算。 2018,14,3459。 “计算网格上的数值核第二个衍生物:复杂分子系统上的启用和加速频率计算”(CO)首次撰写的出版物6。 Taylor,M。G。; ⊥Yang,t。; lin,s。; ⊥nandy,a。;珍妮特(J. P.) Duan,C。; Kulik,H。 J. * J. Phys。 化学。 A,2020,124,3286。 “看见是相信的:来自机器学习模型结构预测的实验性旋转状态”,这些作者同样贡献了7。 黄,M。; ⊥Yang,t。; paretsky,J。; Berry,J.F。;* Schomaker,J。M.* J. am。 化学。 Soc。 2017,139,17376。 am。HSU,W.-C。; Zeng,W.-Q.; lu,I.-C。* Yang,t。;* Wang,Y.-H。* Chemsuschem。2022,E202201。 “用于均匀水氧化的双核钴络合物:通过氧化还原非无纯配体进行调整和过电势”5。 Yang,T。;* Berry,J。F.* J. Chem。 理论计算。 2018,14,3459。 “计算网格上的数值核第二个衍生物:复杂分子系统上的启用和加速频率计算”(CO)首次撰写的出版物6。 Taylor,M。G。; ⊥Yang,t。; lin,s。; ⊥nandy,a。;珍妮特(J. P.) Duan,C。; Kulik,H。 J. * J. Phys。 化学。 A,2020,124,3286。 “看见是相信的:来自机器学习模型结构预测的实验性旋转状态”,这些作者同样贡献了7。 黄,M。; ⊥Yang,t。; paretsky,J。; Berry,J.F。;* Schomaker,J。M.* J. am。 化学。 Soc。 2017,139,17376。 am。2022,E202201。“用于均匀水氧化的双核钴络合物:通过氧化还原非无纯配体进行调整和过电势”5。Yang,T。;* Berry,J。F.* J. Chem。 理论计算。 2018,14,3459。 “计算网格上的数值核第二个衍生物:复杂分子系统上的启用和加速频率计算”(CO)首次撰写的出版物6。 Taylor,M。G。; ⊥Yang,t。; lin,s。; ⊥nandy,a。;珍妮特(J. P.) Duan,C。; Kulik,H。 J. * J. Phys。 化学。 A,2020,124,3286。 “看见是相信的:来自机器学习模型结构预测的实验性旋转状态”,这些作者同样贡献了7。 黄,M。; ⊥Yang,t。; paretsky,J。; Berry,J.F。;* Schomaker,J。M.* J. am。 化学。 Soc。 2017,139,17376。 am。Yang,T。;* Berry,J。F.* J. Chem。理论计算。2018,14,3459。“计算网格上的数值核第二个衍生物:复杂分子系统上的启用和加速频率计算”(CO)首次撰写的出版物6。Taylor,M。G。; ⊥Yang,t。; lin,s。; ⊥nandy,a。;珍妮特(J. P.) Duan,C。; Kulik,H。 J. * J. Phys。 化学。 A,2020,124,3286。 “看见是相信的:来自机器学习模型结构预测的实验性旋转状态”,这些作者同样贡献了7。 黄,M。; ⊥Yang,t。; paretsky,J。; Berry,J.F。;* Schomaker,J。M.* J. am。 化学。 Soc。 2017,139,17376。 am。Taylor,M。G。; ⊥Yang,t。; lin,s。; ⊥nandy,a。;珍妮特(J. P.) Duan,C。; Kulik,H。J.* J. Phys。化学。A,2020,124,3286。“看见是相信的:来自机器学习模型结构预测的实验性旋转状态”,这些作者同样贡献了7。黄,M。; ⊥Yang,t。; paretsky,J。; Berry,J.F。;* Schomaker,J。M.* J. am。 化学。 Soc。 2017,139,17376。 am。黄,M。; ⊥Yang,t。; paretsky,J。; Berry,J.F。;* Schomaker,J。M.* J.am。化学。Soc。2017,139,17376。am。“反转空间效应:使用'有吸引力的'非共价相互作用来直接催化硝基转移”⊥这些作者同样贡献了8。Dolan,N。S。; ⊥Scamp,R。J。; ⊥Yang,t。; ⊥Berry,J.F。;* Schomaker,J。M.* J. 化学。 Soc。 2016,138,14658。 “催化剂控制的,可调节的,化学选择性银催化的分子间硝基转移:实验和计算研究”⊥这些作者同样贡献了9。 Yang,T。; Quesne,M。G。; Neu,H。M。; Cantu,F。G。; Goldberg,D。p。;* De Visser,S。P.* J. am。 化学。 Soc。 2016,138,12375。 “ Mn(V) - 氧化物种中的单线与三重反应性:针对实验证据的理论预测” 10。 varela-álvarez,a。; ⊥Yang,t。; ⊥詹宁斯(H。) K. P. Kornecki; Macmillan,S.N。;兰开斯特(K. M。); Mack,J。 B. C。;Dolan,N。S。; ⊥Scamp,R。J。; ⊥Yang,t。; ⊥Berry,J.F。;* Schomaker,J。M.* J.化学。Soc。2016,138,14658。“催化剂控制的,可调节的,化学选择性银催化的分子间硝基转移:实验和计算研究”⊥这些作者同样贡献了9。Yang,T。; Quesne,M。G。; Neu,H。M。; Cantu,F。G。; Goldberg,D。p。;* De Visser,S。P.* J. am。 化学。 Soc。 2016,138,12375。 “ Mn(V) - 氧化物种中的单线与三重反应性:针对实验证据的理论预测” 10。 varela-álvarez,a。; ⊥Yang,t。; ⊥詹宁斯(H。) K. P. Kornecki; Macmillan,S.N。;兰开斯特(K. M。); Mack,J。 B. C。;Yang,T。; Quesne,M。G。; Neu,H。M。; Cantu,F。G。; Goldberg,D。p。;* De Visser,S。P.* J.am。化学。Soc。2016,138,12375。“ Mn(V) - 氧化物种中的单线与三重反应性:针对实验证据的理论预测” 10。varela-álvarez,a。; ⊥Yang,t。; ⊥詹宁斯(H。) K. P. Kornecki; Macmillan,S.N。;兰开斯特(K. M。); Mack,J。B. C。;B. C。;
[1] Kimberly D Acquaviva 和 Matthew Mintz。2010 年。《观点:我们是否在教授种族定性?病例陈述中主观判定种族和族裔的危险》。《学术医学》85,4(2010),702-705。[2] Sarah E Ali-Khan、Tomasz Krakowski、Rabia Tahir 和 Abdallah S Daar。2011 年。《种族、族裔和血统在人类遗传研究中的应用》。《HUGO 杂志》5,1(2011),47-63。[3] Dwayne T Brandon、Lydia A Isaac 和 Thomas A LaVeist。2005 年。《塔斯基吉的遗产和对医疗保健的信任:塔斯基吉是否要为对医疗保健的不信任中的种族差异负责? 《国家医学会杂志》 97, 7 (2005), 951。[4] Lundy Braun、Anne Fausto-Sterling、Duana Fullwiley、Evelynn M Hammonds、Alondra Nelson、William Quivers、Susan M Reverby 和 Alexandra E Shields。2007 年。《医疗实践中的种族类别:它们有多大用处?》PLoS 医学 4, 9 (2007),e271。[5] Asif Doja、M Dylan Bould、Chantalle Clarkin、Kaylee Eady、Stephanie Sutherland 和 Hilary Writer。2016 年。《整个培训过程中的隐性和非正规课程:一项横断面定性研究》。《医学教师》 38, 4 (2016),410–418。[6] Keisa Fallin-Bennett。 2015. 医学界对性少数群体的隐性偏见:职业影响的周期和隐性课程的作用。《学术医学》90,5(2015),549–552。[7] Chloë FitzGerald 和 Samia Hurst。2017. 医疗专业人士的隐性偏见:系统评价。《BMC 医学伦理》18,1(2017),1–18。[8] Linda M Hunt、Nicole D Truesdell 和 Meta J Kreiner。2013. 临床护理中的基因、种族和文化:慢性病管理中的种族定性。《医学人类学季刊》27,2(2013),253–271。[9] J Jaiswal、C LoSchiavo 和 DC Perlman。 2020. 新冠疫情期间的虚假信息、错误信息和不平等驱动的不信任:艾滋病否认主义未吸取的教训。《艾滋病与行为》第 24 卷 (2020),第 2776–2780 页。[10] Myungha Jang、Shiri Dori-Hacohen 和 James Allan。2017. 群体内部的建模争议。ACM SIGIR 信息检索理论国际会议论文集(荷兰阿姆斯特丹)。计算机协会,美国纽约州纽约,第 141–149 页。https://doi.org/10.1145/3121050.3121067 ICTIR '17。[11] Reena Karani、Lara Varpio、Win May、Tanya Horsley、John Chenault、Karen Hughes Miller 和 Bridget O'Brien。 2017. 评论:卫生职业教育中的种族主义和偏见:教育工作者、教师开发人员和研究人员如何发挥作用。《学术医学》92,11S(2017),S1-S6。[12] Tao Le、Vikas Bhushan、Matthew Sochat、Kimberly Kallianos、Yash Chavda、Andrew Harrison Zureick 和 Mehboob Kalani。2018. 2018 年 USMLE Step 1 急救指南。麦格劳-希尔医学。[13] Heidi Lempp 和 Clive Seale。2004. 本科医学教育中的隐性课程:医学生对教学看法的定性研究。Bmj 329,7469(2004),770-773。[14] J. Madara。2020。美国的医疗危机比新冠肺炎更为严重。https://www.ama-assn.org/about/leadership/america-s-health-care-crisis-much-deeper-covid [15] Maria Athina Tina Martimianakis、Barret Michalec、Justin Lam、Carrie Cartmill、Janelle S Taylor 和 Frederic W Hafferty。2015 年。人文主义、隐性课程和教育改革:范围审查和主题分析。Academic Medicine 90, 11 (2015),S5–S13。[16] Sandra G Mayson。2018 年。偏见进,偏见出。YAle lJ 128 (2018),2218。[17] Jonathan M Metzl 和 Dorothy E Roberts。2019 年。结构性能力与结构性种族主义相遇:种族、政治和医学知识结构。在《社会医学读本》第二卷第三版中。杜克大学出版社,170-187。 [18] Long H. Nguyen、Amit D. Joshi、David A. Drew、Jordi Merino、Wenjie Ma、Chun-Han Lo、Sohee Kwon、Kai Wang、Mark S. Graham、Lorenzo Polidori、CristinaMenni、Carole H. Sudre、Adjoa Anyane-Yeboa、Christina M. Astley、Erica T. Warner、ChristinaY。 Hu、Somesh Selvachandran、RichardDavies、Denis Nash、Paul W. Franks、Jonathan Wolf、Sebastien Ourselin、Claire J. Steves、Tim D. Spector、Andrew T. Chan 并代表 COPE 联盟。 2021。COVID-19 疫苗犹豫和使用方面的种族和民族差异。 medRxiv (2021)。 https://doi.org/10.1101/2021.02.25.21252402 arXiv:https://www.medrxiv.org/content/early/2021/02/28/2021.02.25.21252402.full.pdf [19] Anne Pollock。2012. 4. 超越基因决定论的奴隶制假说。在《药物治疗种族》中。杜克大学出版社,107–130。 [20] Amit Prasad。2021. 反科学的错误信息和阴谋:COVID-19、后真相和科学与技术研究(STS)。科学、技术与社会 (2021)。https://doi.org/10.1177/09717218211003413 [21] Kelsey Ripp 和 Lundy Braun。 2017。医学教育中的种族/民族:美国医师执照考试第一步问题库分析。医学教学与学习 29, 2 (2017),115–122。[22] Angela Saini。2019。优越性:种族科学的回归。Beacon Press。[23] Jennifer Tsai、Laura Ucik、Nell Baldwin、Christopher Hasslinger 和 Paul George。2016。种族问题?审视和重新思考临床前医学教育中的种族形象。学术医学 91, 7 (2016),916–920。[18] Long H. Nguyen、Amit D. Joshi、David A. Drew、Jordi Merino、Wenjie Ma、Chun-Han Lo、Sohee Kwon、Kai Wang、Mark S. Graham、Lorenzo Polidori、CristinaMenni、Carole H. Sudre、Adjoa Anyane-Yeboa、Christina M. Astley、Erica T. Warner、ChristinaY. Hu、Somesh Selvachandran、RichardDavies、Denis Nash、Paul W. Franks、Jonathan Wolf、Sebastien Ourselin、Claire J. Steves、Tim D. Spector、Andrew T. Chan 以及 COPE 联盟代表。2021 年。COVID-19 疫苗犹豫和接种中的种族和族裔差异。medRxiv (2021)。 https://doi.org/10.1101/2021.02.25.21252402 arXiv:https://www.medrxiv.org/content/early/2021/02/28/2021.02.25.21252402.full.pdf [19] Anne Pollock。2012. 4. 超越基因决定论的奴隶制假说。在《药物治疗种族》中。杜克大学出版社,107–130。 [20] Amit Prasad。2021. 反科学的错误信息和阴谋:COVID-19、后真相和科学与技术研究(STS)。科学、技术与社会 (2021)。https://doi.org/10.1177/09717218211003413 [21] Kelsey Ripp 和 Lundy Braun。 2017。医学教育中的种族/民族:美国医师执照考试第一步问题库分析。医学教学与学习 29, 2 (2017),115–122。[22] Angela Saini。2019。优越性:种族科学的回归。Beacon Press。[23] Jennifer Tsai、Laura Ucik、Nell Baldwin、Christopher Hasslinger 和 Paul George。2016。种族问题?审视和重新思考临床前医学教育中的种族形象。学术医学 91, 7 (2016),916–920。[18] Long H. Nguyen、Amit D. Joshi、David A. Drew、Jordi Merino、Wenjie Ma、Chun-Han Lo、Sohee Kwon、Kai Wang、Mark S. Graham、Lorenzo Polidori、CristinaMenni、Carole H. Sudre、Adjoa Anyane-Yeboa、Christina M. Astley、Erica T. Warner、ChristinaY. Hu、Somesh Selvachandran、RichardDavies、Denis Nash、Paul W. Franks、Jonathan Wolf、Sebastien Ourselin、Claire J. Steves、Tim D. Spector、Andrew T. Chan 以及 COPE 联盟代表。2021 年。COVID-19 疫苗犹豫和接种中的种族和族裔差异。medRxiv (2021)。 https://doi.org/10.1101/2021.02.25.21252402 arXiv:https://www.medrxiv.org/content/early/2021/02/28/2021.02.25.21252402.full.pdf [19] Anne Pollock。2012. 4. 超越基因决定论的奴隶制假说。在《药物治疗种族》中。杜克大学出版社,107–130。 [20] Amit Prasad。2021. 反科学的错误信息和阴谋:COVID-19、后真相和科学与技术研究(STS)。科学、技术与社会 (2021)。https://doi.org/10.1177/09717218211003413 [21] Kelsey Ripp 和 Lundy Braun。 2017。医学教育中的种族/民族:美国医师执照考试第一步问题库分析。医学教学与学习 29, 2 (2017),115–122。[22] Angela Saini。2019。优越性:种族科学的回归。Beacon Press。[23] Jennifer Tsai、Laura Ucik、Nell Baldwin、Christopher Hasslinger 和 Paul George。2016。种族问题?审视和重新思考临床前医学教育中的种族形象。学术医学 91, 7 (2016),916–920。种族问题?审视并重新思考临床前医学教育中的种族描述。《学术医学》91,7(2016),916–920。种族问题?审视并重新思考临床前医学教育中的种族描述。《学术医学》91,7(2016),916–920。
参考文献 [1] Hollingsworth, Scott A. 和 P. Andrew Karplus。“重新审视拉马钱德兰图和蛋白质中标准结构的出现。” (2010):271-283。 [2] Sheik, SS 等人。“网络上的拉马钱德兰图。” 生物信息学 18.11 (2002):1548-1549。 [3] Zhao, Linlin 等人。“通过大数据和数据驱动的机器学习建模推进计算机辅助药物发现 (CADD)。” 当今药物发现 25.9 (2020):1624-1638。 [4] Zhao, Linlin 等人。“通过大数据和数据驱动的机器学习建模推进计算机辅助药物发现 (CADD)。” 当今药物发现 25.9 (2020):1624-1638。 [5] Vemula, Divya 等人。 “药物发现中的 CADD、AI 和 ML:全面综述。” 《欧洲药物科学杂志》181 (2023): 106324。 [6] del Carmen Quintal Bojórquez、Nidia 和 Maira RS Campos。 “抗癌药物发现过程中的传统和新型计算机辅助药物设计 (CADD) 方法。”当前癌症药物目标 23.5 (2023): 333-345。 [7] 纳西门托、伊戈尔·何塞·多斯桑托斯、蒂亚戈·门东萨·德·阿基诺和埃德尔多·费雷拉·达·席尔瓦-儒尼奥尔。 “药物发现的新时代:计算机辅助药物设计 (CADD) 的力量。”药物设计与发现快报 19.11 (2022): 951-955。 [8] 克里斯蒂安娜·博尔奇尼等人。 “CADD:一种用于情境建模和数据定制的工具。”2007 年国际移动数据管理会议。IEEE,2007 年。[9] Donoso F、Cryan JF、Olavarría‐Ramírez L、Nolan YM、Clarke G。炎症、生活方式因素和微生物组-肠-脑轴:与抑郁和抗抑郁作用的相关性。临床药理学与治疗学。2023 年 2 月;113(2):246-59。[10] Lu Y、Jiang T、Duan J。抑郁症和抗抑郁药中的胃肠道微生物组和相关代谢物——综合综述。生命研究。2023 年;6(3):16。 [11] Beck-Pancer D、Aghaee S、Swint A、Acker J、Deardorff J、Kubo A。孕期母亲抑郁和抗抑郁药的使用与青春期儿童抑郁症状和自杀倾向的关系。临床流行病学。2023 年 12 月 31 日:613-28。[12] Vita G、Compri B、Matcham F、Barbui C、Ostuzzi G。抗抑郁药用于治疗癌症患者的抑郁症。Cochrane 系统评价数据库。2023(3)。[13] Su JA、Chang CC、Yang YH、Lee CP、Chen KJ、Lin CY。孕期抑郁或抗抑郁药暴露后的新生儿和妊娠并发症:一项基于人群的回顾性出生队列研究。亚洲精神病学杂志。2023 年 6 月 1 日;84:103545。 [14] Hsu JW, Chen LC, Tsai SJ, Huang KL, Bai YM, Su TP, Chen TJ, Chen MH. 抗抑郁药耐药和抗抑郁药反应的青少年和青年患者中疾病进展为躁郁症
要揭示人类大脑如何编码和约束词语,必须识别形态语义加工背后的复杂神经认知机制。形态加工涉及对给定词语的内部形态信息和结构的心理操作,整个过程总是与语义分析交织在一起(Chung, Tong, Liu, McBride-Chang, & Meng, 2010 ; Ip et al., 2017)。迄今为止,尽管形态学在字母语言处理中的作用已得到广泛探索(例如,Bölte、Jansma、Zilverstand和Zwitserlood,2009;Carrasco-Ortiz和Frenck-Mestre,2014;Leminen、Smolka、Dunabeitia和Pliatsikas,2019;Schremm、Nov en、Horne和Roll,2019),但尚不清楚中文形态学在阅读过程中如何表现。由于超过 70% 的中文词是由两个或三个构成字/词素复合而成的,因此书面中文通常被描述为形态音节(DeFrancis,1989),其中每个字对应一个音节/词素。因此,亚词汇层次的构成词素可能在介导词汇获取和整词加工中发挥重要作用。最近,越来越多的研究证明了汉语复合词阅读中词素效应和亚词汇加工的心理现实(例如,Huang, Lee, Huang, & Chou, 2011; Huang, Lee, Tsai, & Tzeng, 2011; Zhao, Wu, Li, & Guo, 2017 ; Gao, Wang, Zhao, & Yuan, 2021 )。然而,在汉语词汇阅读过程中,人类大脑如何编码形态约束的时空特征仍不清楚。有趣的是,有人将并列复合词(如“花草”、/faa1 cou2/、flower 和 grass、plant)嵌入视觉启动词汇决策任务中,研究了汉语形态结构加工的时间进程和时间特征(Chung et al.,2010)。事件相关电位(ERP)结果显示,纯形态结构效应仅在220 至300 毫秒的时间窗内检测到(额叶P250/P2效应),而经典的N400语义启动效应(表现在中央顶叶电极点)能够指示语义记忆网络的激活,这表明形态结构可能在早期复合词阅读过程中自动调节语义加工(Pylkköanen & Marantz,2003;Pylkköanen、Feintuch、Hopkins & Marantz,2004)。另一项研究也表明,具有相同形态结构的词对比具有不同结构的词对引起的 P2a 波幅更大(在额叶部位为 150 至 180 毫秒)(顾,余,马,2012)。这些发现表明,在汉语复合词阅读的早期阶段可能存在形态结构加工成分,并且独立于后期的词汇语义加工。然而,与早期加工理论(如 P250/P2、P2a)相反,最近的一系列研究表明,汉语形态加工在词汇后层面上暗示着有意识的过程(Allen、Badecker 和 Osterhout,2003;Newman、Ullman、Pancheva、Waligura 和 Neville,2007)。例如,研究发现,形态生产力较高的词(即从属结构)会引发明显更大的 P600
s/n地址DG的建筑物类别(Cap。295G)1 1 Dai Fu Street,Tai Po Industrial Estate,Tai Po,N.T。 -3 2 1 Kin Wong Street,Tuen Mun,N.T。 -2.2,3a 3 1 Ma Kok Street,Tsuen Wan,N.T。 -3a 4 1 Sheung Pak Lai Tsuen,Lau Fau Shan,Yuen Long,N.T。 -3a 5 1 Wang Wo Tsai Street,Tsuen Wan,N.T。 -3a 6 1-7庆氏KCTL 8,N.T。 -3a 7 1 -N Kwong Fuk Road,Tai Po,NT Caltex汽油填充站3,3A 8 10 Ho Tin Street,N.T。Tsuen Mun -2.2 9 10在N.T. Fanling的Kui Street上 -3 10 11 Castle Peak Road,Ping Shan,Yuen Long,N.T。 Shell Ping Shan汽油填充站3,3a 11 11 11 East,Hongantaun Airport,Honganta lantau,H.K。香港国际机场 -3,3a 12 11在北卡罗来纳州范林格的Chuen Street上 -3A 13 11-13北,北部北部工业区戴国王街 -3,3A 14 11-15 Dai Fu Street,Tai Po Industrial Estate,N.T。 -3,3A 15 12 Chung Mei Road,Tsing Yi,N.T。 -3a 16 12 dai街,太极邮政区,泰富(Tai Po)庄园 - 3 17 12 Wang Lok Street,Yuen Long Industrial Estate,Yuen Long,N.T。 -3,3A 18 14 Dai Fu Street,Tai Po Industrial Estate,N.T。 -3a 19 145-149 Kwok Shui Road,Kwai Chung电话交易所,Kwai Chung,N.T。 Kwai Chung电话交易所2.2,3,3A 20 15 Dai Kwai Street,Tai Po Industrial Estate,Tai Po。 n.t。 -3A 21 15 TSING YI ROAD,TSING YI,N.T。 YI服务站3,N.T。 -3,6.1 23 17 Dai Shing Street,Tai Po Industrial Estate,N.T。 Est。,Tai Po,N.T。295G)1 1 Dai Fu Street,Tai Po Industrial Estate,Tai Po,N.T。-3 2 1 Kin Wong Street,Tuen Mun,N.T。 -2.2,3a 3 1 Ma Kok Street,Tsuen Wan,N.T。 -3a 4 1 Sheung Pak Lai Tsuen,Lau Fau Shan,Yuen Long,N.T。 -3a 5 1 Wang Wo Tsai Street,Tsuen Wan,N.T。 -3a 6 1-7庆氏KCTL 8,N.T。 -3a 7 1 -N Kwong Fuk Road,Tai Po,NT Caltex汽油填充站3,3A 8 10 Ho Tin Street,N.T。Tsuen Mun -2.2 9 10在N.T. Fanling的Kui Street上 -3 10 11 Castle Peak Road,Ping Shan,Yuen Long,N.T。 Shell Ping Shan汽油填充站3,3a 11 11 11 East,Hongantaun Airport,Honganta lantau,H.K。香港国际机场 -3,3a 12 11在北卡罗来纳州范林格的Chuen Street上 -3A 13 11-13北,北部北部工业区戴国王街 -3,3A 14 11-15 Dai Fu Street,Tai Po Industrial Estate,N.T。 -3,3A 15 12 Chung Mei Road,Tsing Yi,N.T。 -3a 16 12 dai街,太极邮政区,泰富(Tai Po)庄园 - 3 17 12 Wang Lok Street,Yuen Long Industrial Estate,Yuen Long,N.T。 -3,3A 18 14 Dai Fu Street,Tai Po Industrial Estate,N.T。 -3a 19 145-149 Kwok Shui Road,Kwai Chung电话交易所,Kwai Chung,N.T。 Kwai Chung电话交易所2.2,3,3A 20 15 Dai Kwai Street,Tai Po Industrial Estate,Tai Po。 n.t。 -3A 21 15 TSING YI ROAD,TSING YI,N.T。 YI服务站3,N.T。 -3,6.1 23 17 Dai Shing Street,Tai Po Industrial Estate,N.T。 Est。,Tai Po,N.T。-3 2 1 Kin Wong Street,Tuen Mun,N.T。-2.2,3a 3 1 Ma Kok Street,Tsuen Wan,N.T。-3a 4 1 Sheung Pak Lai Tsuen,Lau Fau Shan,Yuen Long,N.T。-3a 5 1 Wang Wo Tsai Street,Tsuen Wan,N.T。-3a 6 1-7庆氏KCTL 8,N.T。-3a 7 1 -N Kwong Fuk Road,Tai Po,NT Caltex汽油填充站3,3A 8 10 Ho Tin Street,N.T。Tsuen Mun-2.2 9 10在N.T. Fanling的Kui Street上-3 10 11 Castle Peak Road,Ping Shan,Yuen Long,N.T。Shell Ping Shan汽油填充站3,3a 11 11 11 East,Hongantaun Airport,Honganta lantau,H.K。香港国际机场-3,3a 12 11在北卡罗来纳州范林格的Chuen Street上-3A 13 11-13北,北部北部工业区戴国王街-3,3A 14 11-15 Dai Fu Street,Tai Po Industrial Estate,N.T。-3,3A 15 12 Chung Mei Road,Tsing Yi,N.T。-3a 16 12 dai街,太极邮政区,泰富(Tai Po)庄园 - 3 17 12 Wang Lok Street,Yuen Long Industrial Estate,Yuen Long,N.T。-3,3A 18 14 Dai Fu Street,Tai Po Industrial Estate,N.T。-3a 19 145-149 Kwok Shui Road,Kwai Chung电话交易所,Kwai Chung,N.T。Kwai Chung电话交易所2.2,3,3A 20 15 Dai Kwai Street,Tai Po Industrial Estate,Tai Po。 n.t。 -3A 21 15 TSING YI ROAD,TSING YI,N.T。 YI服务站3,N.T。 -3,6.1 23 17 Dai Shing Street,Tai Po Industrial Estate,N.T。 Est。,Tai Po,N.T。Kwai Chung电话交易所2.2,3,3A 20 15 Dai Kwai Street,Tai Po Industrial Estate,Tai Po。n.t。-3A 21 15 TSING YI ROAD,TSING YI,N.T。YI服务站3,N.T。 -3,6.1 23 17 Dai Shing Street,Tai Po Industrial Estate,N.T。 Est。,Tai Po,N.T。YI服务站3,N.T。-3,6.1 23 17 Dai Shing Street,Tai Po Industrial Estate,N.T。Est。,Tai Po,N.T。Est。,Tai Po,N.T。-3a 24 17-19 Yuen Shun Circuit,Siu Lek Yuen,Shatin,N.T。-2.2,2.3,5.1,8 25 25 18 dai街,Tai Po Industrial Estate,N.T。-3 26 18号戴史街,太极工业庄园,北卡罗来纳州-2.1,2.2,2.3 27 18号王洛街,Yuen Long Industrial Estate,Yuen Long,N.T。-3A,5.2,8 28 19王洛街,Yuen Long工业庄园,Yuen Long,N.T。-3 29 2 Dai Hei Street,Tai Po Industrial Estate,Tai Po,N.T。-3A 30 2-16 Lam Tin Street,Kwai Chung,N.T。-3a 31 2-4 Dai Fat St.,Tai Po Ind。-3a 32 2-4 Dai Shing Street,Tai Po Industrial Estate,Tai Po,N.T。-3,3A,8 33 2-6 Dai King Street,Tai Po Industrial Estate,N.T。 -3A 34 20 Dai Kwai Street,Tai Po Industrial Estate,N.T。 -3A 35 20 Tong Yan San Tsuen Road,Yuen Long Shell Tong Yan San Tsuen Petrol填充站3,3A 36 22 Wang Lee Street,Yuen Long工业庄园,Yuen Long N.T. -2.2,2.3,3,3a,8 37 22-24 Kwai Tei Street,Fo Tan,Shatin,N.T。 -3A 38 23 23 Dai Cheong Street,Tai Po Industrial Estate,N.T。 -3A 39 23 KAM HO ROAD,KCRC WEST RAID大楼,N.T。 KCRC西铁路大楼3A-3,3A,8 33 2-6 Dai King Street,Tai Po Industrial Estate,N.T。-3A 34 20 Dai Kwai Street,Tai Po Industrial Estate,N.T。-3A 35 20 Tong Yan San Tsuen Road,Yuen Long Shell Tong Yan San Tsuen Petrol填充站3,3A 36 22 Wang Lee Street,Yuen Long工业庄园,Yuen Long N.T.-2.2,2.3,3,3a,8 37 22-24 Kwai Tei Street,Fo Tan,Shatin,N.T。-3A 38 23 23 Dai Cheong Street,Tai Po Industrial Estate,N.T。-3A 39 23 KAM HO ROAD,KCRC WEST RAID大楼,N.T。 KCRC西铁路大楼3A-3A 39 23 KAM HO ROAD,KCRC WEST RAID大楼,N.T。KCRC西铁路大楼3A
1. Araldi, RP 等人,成簇的规律间隔的短回文重复序列 (CRISPR/Cas) 工具的医学应用:全面概述。基因,2020 年。745:第 144636 页。2. Frangoul, H.、TW Ho 和 S. Corbacioglu,CRISPR-Cas9 基因编辑用于镰状细胞病和β-地中海贫血。回复。N Engl J Med,2021 年。384 (23):第 e91 页。3. Groenen, PMA 等人,结核分枝杆菌直接重复簇中 DNA 多态性的性质 - 一种新型分型方法在菌株区分中的应用。分子微生物学,1993 年。10 (5):第 1057-1065 页。 4. Ishino, Y. 等人,大肠杆菌中负责碱性磷酸酶同工酶转化的 Iap 基因的核苷酸序列及其基因产物的鉴定。细菌学杂志,1987 年。169 (12):第 5429-5433 页。5. Chen, JS 和 JA Doudna,Cas9 及其 CRISPR 同事的化学反应。自然评论化学,2017 年。1 (10)。6. Doudna, JA 和 E. Charpentier,使用 CRISPR-Cas9 进行基因组工程的新前沿。科学,2014 年。346 (6213):第 1077-+ 页。7. Whinn, KS 等人,核酸酶死亡 Cas9 是 DNA 复制的可编程障碍。科学报告,2019 年。9 月。8. Tsai, SQ 等人,GUIDE-seq 可对 CRISPR-Cas 核酸酶的脱靶切割进行全基因组分析。自然生物技术,2015 年。33 (2):第 187-197 页。9. Wang, Y. 等人,CRISPR 系统的特异性分析揭示了大大增强的脱靶基因编辑。科学报告,2020 年。10 (1)。10. Zuccaro, MV 等人,Cas9 切割人类胚胎后去除等位基因特异性染色体。细胞,2020 年。183 (6):第 1650-+ 页。11. Aschenbrenner, S. 等人,将 Cas9 与人工抑制结构域耦合可增强 CRISPR-Cas9 靶向特异性。 Science Advances,2020 年。6 (6)。12. Bondy-Denomy, J. 等人,抗 CRISPR 蛋白抑制 CRISPR-Cas 的多种机制。Nature,2015 年。526 (7571):第 136-9 页。13. Khajanchi, N. 和 K. Saha,通过小分子调控控制 CRISPR 进行体细胞基因组编辑。Mol Ther,2022 年。30 (1):第 17-31 页。14. Han, J. 等人,对小分子药物的超敏反应。Front Immunol,2022 年。13:第 1016730 页。15. Pettersson, M. 和 CM Crews,蛋白水解靶向嵌合体 (PROTAC) - 过去、现在和未来。 Drug Discov Today Technol,2019. 31:第 15-27 页。16. Bondeson, DP 和 CM Crews,小分子靶向蛋白质降解。Annual Review of Pharmacology and Toxicology,第 57 卷,2017 年。57:第 107-123 页。17. Li, R.,等人,蛋白水解靶向嵌合体 (PROTAC) 在癌症治疗中的应用:现在和未来。Molecules,2022 年。27 (24)。18. Farasat, I. 和 HM Salis,用于合理设计基因组编辑和基因调控的 CRISPR/Cas9 活性的生物物理模型。PLoS Comput Biol,2016 年。12 (1):第 e1004724 页。
奖奖与区分理学学士学位,2010年比约恩·安德森(Bjorn Anderson),纳尔逊·安杜贾尔(Nelson Andujar),吉尔赫姆·阿劳霍(Guilherme Araujo),马里奥·阿维拉(Mario Avila),萨姆拉特·巴塔塔亚(Samrat Bhattacharyya),奥斯汀·布劳瑟(Austin Brauser),威尔·布朗(William Brown),威尔·布朗(William Brown),罗德尼(Rodney),罗德尼(Rodney) Estela Gonzalez, Frances Jeffrey-Coker, Monica Joshi, Tushar Khandelwal, Edward Kim, Ken- neth Koo, Todd Kwao-Vovo, Hiemann Lee, Ning Leung, Raphael Levy, Salvatore Marsico, Mirek Martincik, Ian McKinley, Ismael Nieto, Jefferson Okraku, Darren Pagan, Philippe Putzeys, Jie Qi, Khadijah Ransom, Jeffrey Rodri- guez, Chelsey Roebuck, Rajiv Shah, Islam Shawki, David Shimel, Anup Shrestha, Daniel Sievert, Adam Steege, Ian Van Sant, Tat-Hong Wong SPECIAL CONGRATULATIONS TO THE 2010 MECHANICAL ENGINEERING AWARD RECIPIENTS: The American Society of Mechanical Engineers Award: Edward Kim Edward A.
(5) E. Feigenbaum 和 B. Buchanan,“DENDRAL 和 META-DENDRAL:知识系统和专家系统应用的根源,”Artif. Intell.,第 59 卷,第 1-2 期,第 233-240 页,1994 年。 (6) K. Niwa 和 M. Okuma,“技术诀窍转移方法及其在大型建设项目风险管理中的应用,”IEEE Trans. Eng. Manage.,第 29 卷,第 4 期,第 146-153 页,1982 年。 (7) K. Niwa 和 K. Sasaki,“一种新的项目管理系统方法:基于技术诀窍的项目管理系统,”Project Management Quarterly,第 14 卷,第 1 期,第 65-72 页,1983 年。 (8) K. Niwa,“一种基于知识的人机协作系统, ative system for ill-structured management domains,”IEEE Trans. Syst., Man Cybern., vol.16, no.3, pp.335–342, 1986. (9) HM Leung、VM Rao Tummala 和 KB Chuah,“A knowledge-based system for determining potential projectrisks,”Omega, vol.26, no.5, pp.623–638, 1998. (10) Takeshi Oshima 和 Tomiko Maruyama,“Project management method by visualizing volatilitys in software scale,”Journal of the Society of Project Management, vol.19, no.1, pp.26–31, 2017. (11) C. Jones, Applied softwaremeasurement: global analysis of productivity and quality, McGraw-Hill Education Group, 2008.(Hisashi Tomino 和 Kyoichi Kosaka 译) ,软件开发的定量方法:旨在提高生产率和质量(第三版),Kyoritsu Shuppan,2010年。 14)Katero Inoue,Kenichi Matsumoto,Masahiro Tsurubo和Koji Torii,“实现经验软件工程环境的方法”,信息处理,第45卷,第7期,第722-728页,2004年,2004年。(15) Ademia合作:IT系统开发中质量预测的实用方法,” (16) M. Tsunoda、N. Osugi、A. Kadota、K. Matsumoto 和 S. Sato,“使用协同过滤的软件开发工作量预测方法”,信息处理杂志,第 46 卷,第 5 期,第 1155-1164 页,2005 年。 (17) D. Zhang 和 J. J. Tsai,“机器学习和软件工程”,软件质量杂志,第 11 卷,第 2 期,第 87-119 页,2003 年。 (18) J. Wang 和 C. Zhang,“使用基于 RNN 编码器-解码器的深度学习模型进行软件可靠性预测”,Reliab. Eng. Syst. Saf.,第 170 卷,第 73-82 页,2018 年。 (19) T. Mori 和 N. Uchihira,“在软件缺陷预测中平衡准确性和可解释性”,Empir. Softw. Eng.,第 24 卷,第 2 期,第 779-825 页,2019 年。 (20) R. High,认知系统时代:深入了解 IBM Watson 及其工作原理,IBM Corporation,Redbooks,2012 年。 (21) IBM Cognitive PMO,https://www.ibm.com/jp-ja/marketplace/cognitive- pmo-jp(2020 年 1 月 5 日访问) (22) Naoshi Uchihira,“项目管理中的知识转移”,人工智能百科全书,第 19-10 节, pp.1355-1360,共立出版,2017年。 (23) Fujitsu KIWare,https://pr.fujitsu.com/jp/news/2017/11/28.html(2020/1/5访问) (24) Masatoshi Morisaki,“基于AI的源代码审查~通过深度学习诊断代码之美”,信息处理,第59卷,第11期,第985-988页,2018年。 (25) Takeshi Oshima、Naoshi Uchihira,“用于项目管理的AI知识分类模型~IT企业中AI应用方法的研究~”,国际项目管理期刊,第13卷,第1期,第121-141页,2018年。 (26) Toshiki Mori、Naoshi Uchihira,“项目和计划风险管理中的机器学习和知识创造的综合方法”,国际 P2M 杂志,第 14 卷,第 1 期,第 415-435 页,2019 年。
2018; Tirelli等,2018)。特定的血管密度,直径和曲折被发现(Ravi等,1998; Djaberi等,2013; Sasahira和Kirita,2018)。在这种情况下,OSCC病变中微脉管系统的研究已成为有前途的诊断途径。用于评估口腔微举行的成像模式在过去十年中已有显着发展,并且包括高频超声(Huang等,2017; Fogante等,2022),实时光学血管成像(RTOVI)(RTOVI)(RTOVI)(RTOVI)(Bastos等,20222)和视频。但是,与光学成像技术相比,高频超声受其分辨率的限制,而RTOVI受到限制性视野的挑战。视频 - 毛细管镜检查仅具有浅渗透深度,因为使用可见光进行成像。这些限制可能会影响这些技术在OSCC最早阶段捕获细微的血管变化的能力。因此,迫切需要更先进的非侵入性成像技术,这些技术可以准确地可视化和量化OSCC中的微血管变化,从而促进早期和更有效的诊断。基于光学连贯性层析成像(OCT)的血管造影(OCTA)是成像技术中相对较新的创新,已针对口服诊断的应用开发(Choi和Wang,2014; Chen and Wang,2017; Tsai等,2017; Le等,2018; 2022; 2022; 2022; Wei et al an e e et al。,2018 al。这些指标可以在表征各种血管疾病方面带来进步。作为一种非侵入性成像技术,Octa提供了微血管结构的高分辨率,三维视图,而无需对比度(Kashani等,2017)。该技术是基于捕获红细胞对比的原理,从而提供了组织内血流的详细图像(Chen and Wang,2017)。这些新兴应用突出了Octa在口腔医疗保健中的重要意义,为基于成像的口腔疾病评估提供了新的领域。八八颗,这种非侵入性功能成像技术在口服成像中表现出了承诺,仍然需要对捕获的口腔血管造影的客观评估技术。在其他应用中已经实施了对OCT血管造影的定量评估,例如心脏病学(Xie等,2024),皮肤病学(Untracht等,2021; Manfredini等,2023),2023年,2023年)和眼科(Reif等,2012; Agemy et al。et al.,2015年; Engberg等人,2020年;For the analysis of microvascular structures, the aforementioned studies introduced several parameters, such as vessel area density (VAD) ( Reif et al., 2012 ; Jia et al., 2015 ), vessel skeleton density (VSD) ( Reif et al., 2012 ; Agemy et al., 2015 ), vessel diameter index (VDI) ( Chu et al., 2016 ), and tortuosity index (Ti)(Lee等,2018; Martelli和Giacomozzi,2021)。VDI可以通过分析血管的平均直径进一步贡献(Chu等,2016)。vad通过测量血管占据的面积(2012; Jia等,2015; Chu等,2016),提供了对血管网络密度的见解,而VSD则重点介绍这些容器的长度,从而提供了不同的观点,提供了不同的观点(Reif等人(Reif等人)(Reif等人,2012年,2012年; Agemem et egemem et al。这些参数对于识别和量化可能表明疾病存在或进展的细微血管变化至关重要。但是,重要的是要注意,这些参数中的每一个都可能只有