。cc-by-nc-nd 4.0国际许可证(未获得同行评审证书)获得的是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权所有,该版本发布于2024年6月23日。 https://doi.org/10.1101/2024.06.21.600065 doi:Biorxiv Preprint
农杆菌是一种杆状土壤细菌,以其将肿瘤诱导质粒 (Ti 质粒) 片段转移到植物细胞的独特能力而闻名。这种机制已广泛应用于植物基因工程。本综述深入探讨了农杆菌与植物细胞之间复杂的生物相互作用,包括细菌附着、毒力 (Vir) 基因的激活、T 复合物的产生和运输以及 T-DNA 整合到植物染色体中的关键步骤。此外,本综述还研究了农杆菌作为转化工具的工程化,重点研究了 Ti 质粒的修饰以创建二元和共整合载体系统,这大大提高了转化方案的效率和多功能性。本文还重点介绍了农杆菌介导的转化在可食用疫苗生产中的应用。通过详细研究农杆菌介导转化的生物学、技术和实践方面,本综述旨在为优化该技术以用于各种植物生物技术应用提供见解。最终,了解和改进农杆菌介导转化对于推进植物生物技术至关重要。
肽聚糖(PG)是一种网状结构,是细菌细胞壁的主要成分,对于维持细胞完整性和形状至关重要。大多数细菌依靠青霉素结合蛋白(PBP)进行交联,但某些物种也采用LD-转肽酶(LDTS)。与PBP不同,LDT的本质和生物学功能在很大程度上不清楚。以其极性生长而闻名的字母细菌的杂种菌序,其PG异常富含LD-Crosslinks,这表明LDT在这些细菌中可能在PG合成中起更重要的作用。在这里,我们研究了植物病原体农杆菌tumefaciens中的LDT,发现该细菌中至少有14个假定的LDT中的14种引起的LD-肽对其存活至关重要。值得注意的是,缺乏独特的7个LDT的突变体在杂种菌中广泛保守的突变体表现出降低的LD互动和PG将PG束缚到外膜β-贝尔β-桶蛋白上的链接。因此,这种突变体遭受了严重的健身损失和细胞形状的圆形,强调了这些菌粒特异性LDT在维持细胞壁完整性和促进延伸方面所起的关键作用。tn-sequering屏幕表现出了a的非冗余功能。Tumefaciens LDTS。具体而言,连字符特异性LDTs与除法和细胞周期蛋白表现出合成的遗传相互作用,而来自另一组的单个LDT。此外,我们的发现表明,缺乏所有LDT的菌株表现出独特的表型特征和遗传相互作用。总体而言,我们的工作强调了ld-rosslinking在a中的关键作用。tume-faciens细胞壁完整性和生长,并为这些交联活动的功能专业化提供了见解。
启动子是基因上游的那些基因组区域,这些区域受RNA聚合酶的启动基因转录绑定。因为它是基因表达的最关键要素,因此启动子的识别对于理解基因表达的调节至关重要。这项研究旨在开发基于机器学习的模型,以预测tumefaciens(A. tumefaciens)菌株C58中的启动子。在模型中,启动子序列由三种不同类型的特征描述符编码,即累积的核苷酸频率,k-mer核苷酸组成和二进制编码。使用相关和基于MRMR的算法优化了所获得的特征。这些优化的特征被输入到一个随机森林(RF)分类中,以区分A. tumefaciens菌株C58中的非促进序列的启动子序列。对10倍交叉验证的检查表明,所提出的模型可以产生0.837的整体精度。该模型将为A. tumefaciens C58菌株中启动子的研究提供帮助。
Promoter 35s from the cauliflower mosaic virus (CAMV P35S) Promoter 35s from the leper mosaic virus (FMV P35S) Promoter NOS NOS from Agrobacterium Tumefaciens (PNOS) Terminator nose from AGROBACTERIUM Tumefaciens (tnos) Hygroscopicus Gen Barnase from Bacillus Amyloliquefaciens Gen EPSPS from Agrobacterium Tumefaciens, Szczep CP4 Gen GOX with Ochrobactrum Anthropi Gen Pat from Streptomyces Viridochromogenes NPTII gene from Escherichia coli Gen Cry1AB/AC Construct Promoter 35s from the Cauliflower mosaic病毒/Gen PAT与链霉菌的病毒蛋白色,CAMV p35s/pat)构造CTP2-CP4 EPSPPNOS/NPTIA构建体CAMV
图:图1。PMSU2DR-02 T-DNA的线性图。 图2。 A。农杆菌根源菌株Arport1中PMSU2DR-02的圆形图。 B. tumefasciens菌株ATJGT105中PMSU2DR-02的圆形图。 图3。 PMSU2DR-02 T-DNA插入物的序列。 表列表:表1。 基因供体生物的分类分类表2。 pMSU2DR-02缩写和定义的DNA插入物的遗传元素:ARPORT1:含有gaantry基因在毒力质粒中堆叠所需的遗传成分的根状腺根源菌株。 直接用于植物转化。 cc-nb-lrr:N末端盘绕圈(CC)结构域,核苷酸结合位点(NB)和富含亮氨酸的重复序列(LRRS)EHA105:EHA105 tumefaciens菌株对土豆和其他植物的转基因作用有用。 gaantry:使用重组酶技术HS中的核酸转移基因组装HS:高度敏感的反应JGT105:Tumefaciens JGT105 Gaantry菌株,该菌株是tumefaciens eha105的衍生物,含有基因组成的群体。 直接用于植物转化。 LB: Left Border MOA: Mechanism of Action MSU: Michigan State University NCBI: National Center for Biotechnology Information NPTII: Neomycin phosphotransferase II ONT: Oxford Nanopore Technology ORF: Open Reading Frame PCR: Polymerase Chain Reaction PLRV: Potato Leaf Roll Virus PVY: Potato Virus Y R genes: Resistance genes RB: Right Border RSR: Regulatory Status Review T-DNA:转移DNAPMSU2DR-02 T-DNA的线性图。图2。A。农杆菌根源菌株Arport1中PMSU2DR-02的圆形图。B. tumefasciens菌株ATJGT105中PMSU2DR-02的圆形图。图3。PMSU2DR-02 T-DNA插入物的序列。表列表:表1。基因供体生物的分类分类表2。pMSU2DR-02缩写和定义的DNA插入物的遗传元素:ARPORT1:含有gaantry基因在毒力质粒中堆叠所需的遗传成分的根状腺根源菌株。直接用于植物转化。cc-nb-lrr:N末端盘绕圈(CC)结构域,核苷酸结合位点(NB)和富含亮氨酸的重复序列(LRRS)EHA105:EHA105 tumefaciens菌株对土豆和其他植物的转基因作用有用。gaantry:使用重组酶技术HS中的核酸转移基因组装HS:高度敏感的反应JGT105:Tumefaciens JGT105 Gaantry菌株,该菌株是tumefaciens eha105的衍生物,含有基因组成的群体。直接用于植物转化。LB: Left Border MOA: Mechanism of Action MSU: Michigan State University NCBI: National Center for Biotechnology Information NPTII: Neomycin phosphotransferase II ONT: Oxford Nanopore Technology ORF: Open Reading Frame PCR: Polymerase Chain Reaction PLRV: Potato Leaf Roll Virus PVY: Potato Virus Y R genes: Resistance genes RB: Right Border RSR: Regulatory Status Review T-DNA:转移DNA
3. 在制造转基因细菌的过程中会发生哪些事件的顺序 A. 提取所需基因和 连接基因和质粒 将质粒插入细菌细胞 转化的细菌细胞的生长 B. 转化的细菌的生长 将质粒插入细菌 提取所需基因 C. 将质粒插入细菌 转化的细菌细胞的生长 提取所需基因 D. 将质粒提取入细菌 提取细菌细胞的生长 4. 什么酶在限制片段之间形成共价键? A. DNA 引物酶 B. DNA 解旋酶 C. DNA 连接酶 D. DNA 聚合酶 5. 克隆载体的典型特征是什么? A. 在某些条件下生长时,细菌细胞没有它就无法存活。 B. 它含有允许插入外来 DNA 片段的限制位点。 C. 它可以在细菌细胞中复制。 D. 以上所有。 6. 为了将人类基因插入质粒,两者必须 A. 编码相同的基因产物。 B. 被相同的限制性酶切割。 C. 源自同一类型的细胞。 D. 具有相同的序列 7. 农杆菌在转基因植物生产中的作用是什么? A. 农杆菌基因被插入植物 DNA 中,使植物具有不同的特性。 B. 转基因植物对害虫农杆菌具有抗性。农杆菌被用作将基因转移到植物细胞中的载体。 D. 植物基因被整合到农杆菌基因组中
摘要 。橡胶蒲公英 ( Taraxacum kok-saghyz ) 是一种天然产橡胶的蒲公英,具有成为工业作物的潜力。菊粉是橡胶蒲公英中的储存碳水化合物,其合成与橡胶生产竞争同化碳。我们使用成簇的规律间隔短回文重复序列 (CRISPR)/CRISPR 相关蛋白 (Cas) 系统同时靶向编码 1-果聚糖的基因中的两个位点:果聚糖-1-果糖基转移酶基因 (1-FFT),这是菊粉生物合成中的关键酶。使用发根农杆菌和根癌农杆菌介导的植物转化方法产生具有 CRISPR/Cas9 元件的转基因植物。通过 A 的转化率分别为 71% 和 64%。 rhizogenes 和 A. tumefaciens 介导的转化分别对转基因橡胶蒲公英和根癌农杆菌介导的转化进行了研究。通过限制性位点丢失法和桑格测序证实了诱变。在通过 A. rhizogenes 获得的 13 株转基因植物中,有 6 株显示 1-FFT 基因内的两个靶位点均进行了编辑。使用 A. rhizogenes 介导的转化在 10 周内获得了转基因橡胶蒲公英植物,这比 A. tumafaciens 转化子所需的 6 个月要快得多。在通过 A. tumefaciens 获得的 11 株转基因植物中,有 5 株在两个靶位点都发生了突变。逆转录聚合酶链式反应证实了所有编辑转化子中 Cas9 的表达。A. rhizogenes 介导的双突变转化子和 A. tumefaciens 介导的双突变转化子的菊粉含量都低于野生型植物。此外,A. rhizogenes 介导的转化体的橡胶含量高于野生型植物。因此,本研究验证了使用 CRISPR/Cas9 基因编辑作为橡胶蒲公英中产生有用突变的有效工具,并且可以在未来的作物改良方法中实施。
摘要。Ruzyati M,Sisharmini A,Apriana A,Santoso TJ,Purwanto E,Samanhudi,Yunus A.2022。CRISPR/CAS9_GRNA-OSCKX2模块盒的构建及其引入米CV。Mentik Wangi由农杆菌Tumefaciens介导。生物多样性23:2679-2689。Mentik Wangi是一种来自热带Japonica群体的芳香稻米品种,其姿势高且生产率低。高大的植物姿势使Mentik Wangi大米容易容易住宿,从而导致产量损失。因此,仍然需要提高Mentik Wangi的植物高度和生产力。SD-1(OSGA20OX-2)和CKX2基因负责半矮人特征和高生产率。这项研究旨在构建一个带有OSCKX2基因的GRNA的CRISPR/CAS9盒式模块,并将这种结构引入由Tumefaciens vector lba4404介导的Mentik Wangi水稻。也在先前对Mentik Wangi大米的研究中构建的CRISPR/CAS9_GRNA-GA20OX-CASTETE质粒的引入。结果表明,CRISPR/CAS9_GRNA-CKX2盒式模块已成功地使用Golden Gate Cloning方法构建。将CRISPR/CAS9_GRNA-CKX2和CRISPR/CAS9_GRNA-GA20OX-2盒式模块引入Mentik Wangi Rice,导致了30种通过Hygromycin选择的推定转化线。PCR分析表明,从30条变换线中,15条线对抗霉素抗性基因呈阳性。必须进行进一步的分析,以确定OSCKX2和GA20OX-2靶基因中诱变的发生。