摘要 - RSNA-MICCAI 脑肿瘤放射基因组学分类挑战赛[1]旨在通过对多参数 mpMRI 扫描(T1w、T1wCE、T2w 和 FLAIR)进行二元分类来预测胶质母细胞瘤中的 MGMT 生物标志物[2]状态。数据集分为三个主要队列:训练集、验证集(在训练期间使用),测试集仅在最终评估中使用。图像要么是 DICOM 格式[3],要么是 png 格式[4]。使用不同的架构来研究该问题,包括 3D 版本的 Vision Transformer (ViT3D)[5]、ResNet50[6]、Xception[7] 和 EfficientNet-b3[8]。AUC 被用作主要评估指标,结果显示 ViT3D 和 Xception 模型都具有优势,在测试集上分别达到 0.6015 和 0.61745。与其他结果相比,考虑到任务的复杂性,我们的结果被证明是有效的。通过探索不同的策略、不同的架构和更多样化的数据集可以取得进一步的改进。
越来越多的公共数据集显示出对自动器官细分和图检测的显着影响。但是,由于每个数据集的大小和部分标记的问题,以及对各种肿瘤的有限侵入,因此所得的模型通常仅限于细分特定的器官/肿瘤,以及ig- ignore ignore ignore的解剖结构的语义,也可以将其扩展到新颖的Domains。为了解决这些问题,我们提出了剪辑驱动的通用模型,该模型结合了从对比的语言图像预训练(剪辑)到细分模型中学到的文本嵌入。这个基于夹子的标签编码捕获了解剖学关系,使模型能够学习结构化特征嵌入和段25个器官和6种类型的肿瘤。提出的模型是从14个数据集的组装中开发的,使用总共3,410张CT扫描进行培训,然后对3个附加数据集进行了6,162个外部CT扫描进行评估。我们首先在医疗细分十项全能(MSD)公共排行榜上排名第一,并在颅库(BTCV)之外实现最先进的结果。此外,与数据集特异性模型相比,大学模型在计算上更有效(更快6英制),从不同站点进行CT扫描更好,并且在新任务上表现出更强的传输学习绩效。
深度学习技术的最新进展为协助病理学家从全切片病理图像(WSI)中预测患者的生存期带来了可能性。然而,大多数流行的方法仅适用于WSI中特定或随机选择的肿瘤区域中的采样斑块,这对于捕捉肿瘤与其周围微环境成分之间复杂相互作用的能力非常有限。事实上,肿瘤在异质性肿瘤微环境(TME)中得到支持和培育,详细分析TME及其与肿瘤的相关性对于深入分析癌症发展的机制具有重要意义。在本文中,我们考虑了肿瘤与其两个主要TME成分(即淋巴细胞和基质纤维化)之间的空间相互作用,并提出了一种用于人类癌症预后预测的肿瘤微环境相互作用引导图学习(TMEGL)算法。具体来说,我们首先选择不同类型的块作为节点来为每个 WSI 构建图。然后,提出了一种新颖的 TME 邻域组织引导图嵌入算法来学习可以保留其拓扑结构信息的节点表示。最后,应用门控图注意网络来捕获肿瘤与不同 TME 组件之间与生存相关的交集以进行临床结果预测。我们在来自癌症基因组图谱 (TCGA) 的三个癌症队列上测试了 TMEGL,实验结果表明 TMEGL 不仅优于现有的基于 WSI 的生存分析模型,而且对生存预测具有良好的可解释能力。
Diaialoganglioside GD2在包括神经母细胞瘤和黑色素瘤在内的各种人类肿瘤类型中表达。3F8结合后,对GD2的鼠单克隆抗体(MAB),神经母细胞瘤和某些黑色素瘤对通过人的补体杀死很敏感,而某些甲虫则不是。研究了补体介导的细胞毒性中这些差异的基础机制,将补体不敏感的黑色素瘤细胞系与衰减加速因子(DAF)的表达进行了比较,衰减加速因子(DAF),一种膜调节蛋白,一种保护血细胞,可保护血液细胞免受自动补体攻击。虽然DAF在神经母细胞瘤中是无法检测的,但它以补充不敏感的素瘤存在。当DAF的功能被抗DAF MAB阻断时,C3的摄取和补体介导的液位黑色素瘤系的裂解显着增强。f(ab')2个碎片在增强裂解方面与完整的抗DAF mAb一样有效。DAF阴性和DAF阳性黑色素瘤细胞系对Cobra毒液因子处理的血清对被动裂解具有相当抗性。数据表明,在某些肿瘤中,DAF活动解释了它们对涉及杀害的抵抗力。通过阻止DAF功能来使这些细胞对这些细胞的敏感性的能力可能暗示免疫疗法。
● 校园里有多少残疾学生?有多少人已经毕业? ● 该计划的目标和目的是什么? ● 你们的导师是否使用过残疾人办公室? ● 提供哪些服务?服务是否单独收费? ● 如何确定服务期限?是一个学期?一年?两年还是更长? ● 服务提供者接受过哪些残疾方面的专门培训? ● 安排学术住宿需要哪些残疾记录或文件?记录必须是多近的? ● 学校是否会提供我(学生)需要的特定住宿? ● 是否有残疾学生无法选择的课程? ● 是否有残疾学生必须参加的课程? ● 我(学生)可以在第一年或第二年修读少于全部课程的课程吗? ● 残疾学生可以每学期先注册吗? ● 辅导和/或咨询是一对一还是以小组形式提供的? ● 是否有支持小组? ● 教师或管理人员愿意为残疾学生做出哪些修改? ● 你们为视力受损的人提供哪些便利?为听力受损的人提供哪些便利?● 我需要一对一的助手。这所学校提供这种服务吗?
✓ 前 500 名参与者的 10662 个数据字段 ✓ 前 200 名参与者的 57245 个数据字段 ✓ 193 种肿瘤的变异调用 ✓ 193 种肿瘤的 2370 个生物样本注释字段 ✓ 受控访问下的公开发布预计于 2023 年第四季度
摘要背景:磁共振(MR)图像是脑肿瘤检测最重要的诊断工具之一。在医学图像处理问题中,脑 MR 图像中胶质瘤肿瘤区域的分割具有挑战性。精确可靠的分割算法对诊断和治疗计划有很大帮助。方法:本文介绍了一种新颖的脑肿瘤分割方法作为后分割模块,该方法使用主要分割方法的输出作为输入,并使分割性能值更好。该方法是模糊逻辑和细胞自动机(CA)的组合。结果:BraTS 在线数据集已用于实现所提出的方法。在第一步中,将每个像素的强度输入模糊系统以标记每个像素,在第二步中,将每个像素的标签输入模糊 CA 以使分割性能更好。在性能饱和时重复此步骤。第一步的准确率为 85.8%,但使用模糊 CA 后的分割准确率达到 99.8%。结论:实际结果表明,与其他方法相比,我们提出的方法可以显著改善 MRI 图像中的脑肿瘤分割。
抽象的脑肿瘤分割是对医疗保健中诊断和治疗计划很重要的重要步骤。大脑MRI图像是根据建议的方法在收集数据并准备进一步分析之前先进行预处理的。建议的研究介绍了一种新策略,该策略使用以生物启发的粒子群优化(PSO)算法来分割脑肿瘤图像。为了提高准确性和可靠性,可以调整分割模型的参数。标准措施等标准度量,例如精度,精度,灵敏度,jaccard索引,骰子系数,特异性,用于绩效评估,以衡量建议的基于PSO的分割方法的有效性。建议方法的总体准确性为98.5%。随后的绩效分析分别为骰子得分系数,Jaccard指数,精度,灵敏度和特异性的91.95%,87.01%,92.36%,90%和99.7%的结果提供了更好的结果。因此,此方法对于放射科医生来说可能是有用的工具,可以支持它们诊断大脑中的肿瘤。关键字 - 脑肿瘤,群智能,粒子群优化,磁共振图像。
我们已经使用阳离子脂质体来促进原代和培养细胞类型的腺相关病毒(AAV)质粒转染。AAV质粒DNA显示出比标准质粒的复合物高的表达水平。此外,观察到典型的脂质体介导的瞬时表达与标准质粒的转染所证明的瞬态表达不同,该基因的长期表达(> 30天)。染色体DNA的南部分析进一步证实了长期表达是由于AAV质粒转染组中的转基因而不是在标准质粒转染组中引起的。AAV质粒 - 脂质体复合物诱导的转基因表达水平与重组AAV转导相当。原发性乳房,卵巢和肺部肿瘤细胞可与AAV质粒DNA-脂质体复合物转染。转染的原发性和培养的肿瘤细胞即使在致命照射后也能够表达转基因产物。在正常人类外周血的新鲜分离的CD3+,CD4+和CD8+T细胞中也观察到了高级基因表达。转染效率范围为10%至501%,如白细胞介素2转染的细胞中细胞内白细胞介素-2水平评估。在原发性肿瘤和淋巴样细胞中表达转基因的能力可以应用于肿瘤疫苗研究和方案,最终可以对癌症和艾滋病中细胞免疫反应的高度特异性调节。
近年来,嵌合抗原受体 (CAR) T 细胞癌症免疫疗法在临床上取得了长足进展。然而,与安全性相关的挑战仍然存在;一个主要问题是当 CAR 触发对健康细胞上存在的抗原的反应(靶向、肿瘤外反应)时。改善这种情况的策略依赖于受体亲和力和信号传导之间的复杂关系,这样人们就可以设计出一种仅由表达高抗原水平的肿瘤细胞激活的 CAR。在这里,我们开发了一个 CAR T 细胞展示平台,该平台具有稳定的基因组表达和基于白细胞介素 2 信号传导的快速功能筛选。从对靶抗原具有高亲和力的 CAR 开始,我们结合 CRISPR-Cas9 基因组编辑和深度突变扫描来生成抗原结合域变体库。该库根据抗原结合或细胞信号传导进行了多轮选择。对所得文库进行深度测序和比较分析,发现特定变体富集和消耗,我们从中挑选出基于抗原表达水平被肿瘤细胞选择性激活的 CAR。我们的平台展示了如何结合基于功能筛选的定向进化和深度测序引导选择来提高 CAR 的选择性和安全性。
