Anja Irmisch 1,* ,Ximena Bonilla 2,3,4,5,* ,Stéphane Chevrier 6,* ,Kjong-Van Lehmann 2,3,4,5,* ,Franziska Singer 4,7,* ,Nora C Toussaint 4,7,* ,Cinzia Esposito 8,* ,Julien Mena 9,* ,Emanuela S Milani 10,* ,Ruben Casanova 6,* ,Daniel J Stekhoven 4,7,* ,Rebekka Wegmann 9,* ,Francis Jacob 11,* ,Bettina Sobottka 12,* ,Sandra Goetze 10,* ,Jack Kuipers 13,* ,Jacobo Sarabia del Castillo 8,*,Michael Prummer 7,Mustafa Tuncel 13,Ulrike Menzel 13,Andrea Jacobs 6,Stefanie Engler 6,Sujana Sivapatham 6,Anja frei 12,Gabriele Gut 8,Gabriele Gut 8,Joanna Ficek 2,Reinhard Dummer 1,Reinhard Dummer 1,肿瘤bac bac bac bac bue the+ beeren+ rudolf beerer+ Beisel 13,+,Bernd Bodenmiller 6,+,Viktor H Koelzer 12,+,Holger Moch 12,+,Lucas Pelkmans 8,+,Berend Snijder 9,+,Markus Tolnay 15,+,Bernd Wollscheid 10,+ 2,3,4,5,+,= ,米切尔·勒维斯克 1,+,=
本临床政策参考当前程序术语(CPT®)。cpt是美国医学协会的注册商标。所有CPT代码和描述均具有2023年版权,美国医学协会。保留所有权利。cpt代码和CPT的描述来自当前的手册,本文包含的内容并非旨在包含包罗来语,仅用于信息目的。本临床政策中引用的代码仅出于信息目的。包含或排除任何代码不能保证覆盖范围。提供商应在提交索赔要求索赔之前提及专业编码指南的最新来源。
摘要 肿瘤微环境 (TME) 中的机械力与肿瘤生长、增殖和耐药性有关。肿瘤中强大的机械力会改变癌细胞的代谢和行为,从而促进肿瘤进展和转移。机械信号转化为生化信号,通过机械转导激活致瘤信号通路。癌症免疫治疗最近取得了令人兴奋的进展,开创了“无化疗”治疗的新时代。然而,由于肿瘤微环境复杂,免疫治疗在多种肿瘤中尚未取得令人满意的效果。本文,我们讨论了机械力对肿瘤免疫微环境的影响,并重点介绍了针对免疫治疗中机械力的新兴治疗策略。 关键词 机械力;微环境;免疫治疗;细胞外基质;癌症
促纤维增生性小圆细胞瘤 (DSRCT) 是一种高度侵袭性的儿童癌症,由 11 号和 22 号染色体之间的相互易位引起,从而导致 EWSR1::WT1 癌蛋白的形成。DSRCT 最常见于腹部和盆腔腹膜,对目前的治疗方案(包括化疗、放疗和手术)具有耐药性。作为一种罕见癌症,样本和模型的可用性一直是 DSRCT 研究的限制因素。然而,罕见肿瘤库和新型细胞系的建立最近推动了对 DSRCT 生物学的理解和潜在有前景的靶向治疗方法的识别方面取得了关键进展。在这里,我们回顾了模型和数据集的可用性、对 EWSR1::WT1 致癌机制的当前理解以及有前景的临床前治疗方法,其中一些现在正在进入临床试验阶段。我们讨论了抑制关键依赖性(包括 NTRK3、EGFR 和 CDK4/6)的努力,以及针对 DSRCT 中高表达的表面标志物(如 B7-H3 或源自或由融合癌蛋白驱动的新肽)的新型免疫治疗策略。最后,我们讨论了联合疗法的前景和优先考虑临床转化的策略。
脑肿瘤是一种日益严重的全球流行病,每年夺走数百万人的生命。误诊会导致不必要的治疗并缩短预期寿命。医生已经使用基于计算机的诊断技术(例如 DenseNet201 和 Gabor 滤波器)做出准确诊断。在这项工作中,SVM 用于对独立特征进行分类,并使用 DenseNet201 算法和 Gabor 滤波器从 MRI 图像数据集中收集基本特征。在从目标区域提取独特特征方面,深度卷积层优于标准技术。使用来自 Kaggle 网站的 7023 张脑肿瘤图片的 MRI 数据集,使用 SVM 对特征进行分类。DenseNet201 和 Gabor 滤波器的混合方法产生了最佳的整体结果,精度为 98.02%,准确率为 98.01%,F1 得分为 98.01%。
摘要:人工智能 (AI) 的应用正在加速向患者量身定制的脑肿瘤管理模式转变,实现每个个体的最佳肿瘤功能平衡。基于 AI 的模型可以对诊断和治疗过程的不同阶段产生积极影响。虽然组织学研究仍然难以取代,但在不久的将来,放射组学方法将允许对病变进行互补、可重复和非侵入性表征,协助肿瘤学家和神经外科医生选择最佳治疗方案和化疗中的正确分子靶点。人工智能驱动的工具已经在手术规划中发挥重要作用,界定病变的范围(分割)及其与大脑结构的关系,从而允许在合理可接受的范围内进行精准脑外科手术,以保持生活质量。最后,人工智能辅助模型可以预测并发症、复发和治疗反应,从而提出最合适的后续治疗方案。展望未来,人工智能模型有望整合生化和临床数据来分层风险并指导患者进行个性化筛查方案。
a 乌迪内大学医学系(DMED),乌迪内 33100,意大利 b 阿维亚诺肿瘤学参考中心 (CRO),IRCCS,阿维亚诺 33081,意大利 c 乌迪内大学医学系医学肿瘤学诊所,IRCC OSPEDALE POLICLINICO SAN MARTINO,GENOVA,ITALY D 16132,ISTITUTO NAZIONALE TUMORI,IRCCS,FONDAZIONE G. PASCALE,NAPOLI 80131,ITALY ENAPERITY e II II II II II II II II II II II II II IIRE,NAPIRE,NAPILE,NAPERITY,NAPERITY,NAPIRE,NAPILE,NAPILE,NAPILE,NAPILE,NAPIRE,NAPIRE,NAPILE,NAPILE,napluty圣拉菲尔大学,米拉诺,20132年,意大利G妇产科单位,IRCCS San Raffaele科学研究所,米兰,20132年,意大利H肿瘤学部门 - 纳帕尔大学临床医学和外科系,纳帕利大学纳帕利II “ IRCCS,ROMA 00168,意大利J padova大学肿瘤学和胃肠病学系35122,意大利K肿瘤学2,威尼托肿瘤学研究所IOV-IRCCS,PADOVA,35128 ,Genova大学医学院,Genova 16132,意大利o泌尿外科和妇科系,Istituto Nazionale肿瘤IRCCS“ Fondazione G. Pascale”,Napoli 80131,意大利possology oppedaliero-Univeria Qunia qorena q. napoli 80131,意大利p摩德纳(Modena)和雷吉奥·艾米利亚(Reggio Emilia),意大利摩德纳41124 R romagnolo irccs iStituto romagnolo per lo Studio dei肿瘤 (IRST) “Dino Amadori”,意大利梅尔多拉 47014 s 实验和临床药理学部门,阿维亚诺肿瘤学参考中心 (CRO) IRCCS,阿维亚诺 33081,意大利 t 分子医学和医学生物技术系,那不勒斯费德里科二世大学,那不勒斯 80131,意大利 u 临床病理学部门,圣乔瓦尼·阿多洛拉塔医院,罗马 00184,意大利 v 米开朗基罗基金会,米兰 20121,意大利 w 分子肿瘤学部门,阿维亚诺肿瘤学参考中心 (CRO) IRCCS,阿维亚诺 33081,意大利
类器官通过在体外准确重现组织和肿瘤的异质性,为推动临床前研究和个性化医疗展现出巨大潜力。然而,缺乏标准化的癌症类器官培养方案阻碍了可重复性。本文全面回顾了当前与癌症类器官培养相关的挑战,并强调了该领域最近的多学科进展,特别关注肝癌类器官培养的标准化。我们讨论了导致技术差异的非标准化方面,包括组织来源、加工技术、培养基配方和基质材料。此外,我们强调需要建立可重复的平台,以准确保留母体肿瘤的遗传、蛋白质组学、形态学和药理学特征。在每个部分的末尾,我们的重点转移到原发性肝癌的类器官培养标准化。通过应对这些挑战,我们可以提高癌症类器官系统的可重复性和临床转化,从而使其在精准医疗、药物筛选和临床前研究中具有潜在应用。
Error 500 (Server Error)!!1500.That’s an error.There was an error. Please try again later.That’s all we know.
摘要 癌症仍然是全球面临的重大健康挑战,除了化疗、放疗和分子靶向治疗等全身疗法之外,治疗选择有限。免疫疗法已成为一种有前途的治疗方式,但其疗效已达到稳定水平,因此对癌症患者的益处有限。迫切需要找到更有效的方法来改善患者预后并延长生存期。药物再利用已成为一种有吸引力的药物开发策略,最近引起了人们的广泛关注。本综述全面分析了各种再利用药物在肿瘤发生中的功效,例如转化生长因子-β (TGF- β ) 抑制剂、二甲双胍、核因子 κ B 受体激活剂配体 (RANKL) 抑制剂、粒细胞巨噬细胞集落刺激因子 (GM-CSF)、胸腺肽 α 1 (T α 1)、阿司匹林和双膦酸盐,特别关注它们对肿瘤免疫学和免疫治疗的影响。此外,我们还简要概述了当前的临床前和临床研究,这些研究旨在探讨将这些药物与免疫检查点抑制剂相结合所实现的潜在治疗协同作用。关键词药物再利用;免疫检查点抑制剂;免疫疗法;肿瘤微环境