原子级精确的石墨烯纳米带 (GNR) 因其可大幅改变的电子特性而日益受到关注,这些特性可通过在化学合成过程中控制其宽度和边缘结构来定制。近年来,GNR 特性在电子设备中的开发主要集中在将 GNR 集成到场效应晶体管 (FET) 几何形状中。然而,由于存在单栅极,此类 FET 器件的静电可调性有限。本文报道了将 9 个原子宽的扶手椅型石墨烯纳米带 (9-AGNR) 集成到由超窄手指栅极和两个侧栅极组成的多栅极 FET 几何形状中的设备。高分辨率电子束光刻 (EBL) 用于定义窄至 12 纳米的手指栅极,并将它们与石墨烯电极相结合以接触 GNR。低温传输光谱测量揭示了具有丰富库仑钻石图案的量子点 (QD) 行为,表明 GNR 形成的 QD 既串联又并联。此外,结果表明,附加栅极能够实现纳米结中 QD 的差分调谐,为实现基于 GNR 的多点系统的多栅极控制迈出了第一步。
对应物。[2]因此,2D材料非常适合柔性光电子,并且有可能用于下一代超薄电子和光电设备。[1]在2004年发现石墨烯时,首先实现了2D材料的概念。[4]石墨烯对其出色的电气,光学和机械性能引起了广泛的关注。[4-6]已经研究了各种技术应用,包括Spintronics,sensors,opetelectronics,SuperCapitors和Solar Cells等。[5,7] Besides graphene, other 2D materials, such as h-BN, phosphorene, silicene, germanene, and transition metal dichalcogenides (molybdenum disulfide (MoS 2 ), molybdenum diselenide (MoSe 2 ), tungsten disulfide (WS 2 ), and tungsten diselenide (WSe 2 ), etc.),近年来已经进行了广泛的研究。[1,8–11]单层二维材料的厚度通常在订单上或小于1 nm。同时,它们的侧向尺寸可以达到更大的尺寸(从微米到偶数英寸),并且在随后的处理或进行特征或设备应用程序的后续处理或后续测量之前,可以将2D材料转移到不同的基板上。
摘要:癌症是全球主要死亡原因之一,仅在美国每年就有超过 160 万人患癌症。化疗等常见疗法会损害健康细胞并带来危险的副作用。为了寻找更安全的解决方案,科学家们转向了一个新的研究领域:靶向治疗。在过去十年中,人们的注意力已经转移到使用能够特异性靶向和识别癌细胞的物质,以最大限度地减少严重的副作用和对健康器官的损害。随着抗体-药物偶联物等靶向治疗的成功,一个新的研究领域——小分子-药物偶联物应运而生。小分子-药物偶联物是一个相对较新的领域,是一种更具成本效益和效率的癌症消除疗法。小分子-药物偶联物具有独特的机制和比以前的靶向疗法更快地消除癌细胞的潜力,为治疗学带来了新的视角。本综述利用当前的临床前和临床数据,探讨了小分子-药物偶联物的潜力和未来,并强调了与现有治疗方法的比较。此外,本综述强调了其新颖的科学机制,同时确定了更好地理解靶向癌症治疗的关键研究领域。
摘要:能够可控地增强或抑制层状二维 (2D) 杂化钙钛矿中不同物种的发光贡献,有利于开发颜色可调的宽带发射器。特别是对于表现出有机阳离子层间敏化三重态发射的 2D 钙钛矿,最终的分子发射曲线通常受相邻发色团之间分子间相互作用的影响。将这些发色团嵌入惰性宿主阳离子是一种新兴的策略,用于控制分子间耦合程度,从而影响孤立单体与多分子状态的形成。在这项工作中,我们展示了含有不同数量的萘发色团与己基铵阳离子混合的 2D 钙钛矿的可调宽带发射。在一系列钙钛矿中,自由或自陷激子和萘三重态单体或准分子的发射有助于从绿色到黄色再到橙色的广泛颜色可调性。这些结果表明,有机阳离子混合可能是一种通用方法,可用于修改二维杂化钙钛矿中的光物理结果。关键词:激子、钙钛矿、层状材料、能量转移、磷光、准分子、三重态敏化、杂化界面■ 简介
图2:具有不同的钙钛矿吸收剂组成的建模吸收和装置响应。a)宽带隙(BPBBR 3,实线)的吸收(黑线)顶部子细胞和窄带隙底部子细胞(APBI 3,虚线,虚线)在TPD结构中,
以铅(Pb 2 +)[1,2]为二价阳离子的金属卤化物钙钛矿纳米晶体(NC)由于其尺寸和形貌可调、光学性能增强和化学稳定性,在光伏、[3]光发射和检测、[4,5]激光[5]和水分解[6]等应用方面具有吸引力。然而,据报道,当用毒性较低的[7,8]二价金属(如Sn 2 +)[9,10–12,13]取代铅时,所得NC的化学稳定性较差,缺乏可调性,光学性能也不太理想。相比之下,自50多年前首次被探索以来,Sn卤化物钙钛矿块体[14,15,16]和薄膜[17]已经得到了强有力的发展。 [18] 它们在光伏电池中的性能提高是由于使用添加剂(如SnF2 [19]和离子液体[20])或通过从三维结构转换为二维混合钙钛矿(Dion-Jacobson [8,21]和Ruddlesden-Popper(RP)[22,23])成功稳定了活性层。由于两个主要挑战,块体材料中获得的稳定性增强不能简单地转化为纳米尺度:i)对于 L 1 = 10 nm 以下的 NC,表面体积比很高(其中 L 1 是长方体的最小横向尺寸),这会导致大量金属离子从 Sn 2 + 氧化为 Sn 4 + ,以及 ii)存在光学带隙相差多达 1.25 eV 的多晶型物 [15,16](即具有强光致发光 (PL) 的高导电黑色立方相 (Pm3m)、γ-正交相 (Pnma) 和非导电黄色正交相 (Pnma))。[15,16,24]
智能家居/城市是物联网的重要体现之一,2 涉及各种类型的电子设备,如智能照明系统、3、4 音频视频设备和安全系统。5 其中,语音激活智能照明可以翻译语音命令,实现对灯光的控制。目前,发光二极管 (LED) 和有机发光二极管 (OLED) 已成为智能家居/城市的流行照明系统,6 而具有可调色发射的有机荧光材料是 OLED、7 生物传感、生物成像、8、9 防伪等潜在应用的重要组成部分。 10 与无机荧光粉相比,有机材料具有精确的分子结构,且分子骨架易于修改,有利于获得具有奇妙光物理性质的各种荧光材料,例如稳定的发光自由基、11 颜色可调的发射,以及单线态裂变、12 室温磷光 13 等。14,15 因此,人们致力于开发新型有机荧光材料,以实现具有先进应用的高科技有机电子器件。此外,已经构建了许多用于多色发射以及白光发射的可调荧光发射有机分子,例如比率响应发光材料、16
摘要——开发具有窄带和可调光谱灵敏度的高性能多光谱光电探测器具有重要意义,但迄今为止仍然极具挑战性。本文,我们报道了一种 Si Au/n 型 Si/Au 光电探测器,它不仅在紫外线而且在近红外区域都具有可调窄带灵敏度,这与受控电荷收集变窄 (CCN) 机制有关。此外,当偏压从 0.1 变为 -0.1 V 时,该器件的负响应峰可以从 365 nm 轻松调整到 605 nm,正响应峰可以从 938 nm 调制到 970 nm。特别是,当负响应峰和正响应峰分别接近紫外短波长端和近红外长波长端时,半峰全宽分别小至 92 nm 和 117 nm。器件在紫外-可见光和近红外区域的响应极性相反,使得目前的硅光电探测器在未来的多波段光电系统中具有潜在的重要意义。
17。在这里,我们表明使用DNA的理性设计可以大大扩展膜纳米孔的结构和功能范围。我们的设计策略将DNA双链体捆成成孔亚基,它们会模块化形成可调的孔形状和最高数十纳米的管腔宽度。可以选择附加识别或信号的功能单元。通过拨入基本参数,我们使用广泛使用的研究和手持式分析设备通过电直接单分子传感来证明定制毛孔的实用性和潜力。设计师纳米孔说明了DNA纳米技术如何提供功能性生物分子结构,用于合成生物学,单分子酶学和生物物理分析以及便携式诊断和环境筛查。膜毛孔的管腔定义了它们在生物学和技术中的功能。在纳米孔传感中,通道宽度控制单个分子的入口和通过,并影响分析物阻断通道管腔18-
在这方面,在过去几年中,已经对基于灯笼的单分子杂志(SMM)进行了深入研究,目的是针对分子水平的杂志稳定和较高密度存储应用的稳定。[5,12–19]缓慢的松弛时间,高磁矩和灯笼的可靠地面状态使其非常适合分子自旋的应用。[5,12,13]灯笼驱动的SMM方法的逻辑扩展将是包含灯笼的定期网络的工程,该网络可以充当主动磁性信息单位。在过去的几十年中,金属分子方案已成为一种强大的策略,用于设计嵌入金属元件的功能性网状材料。[20–22]这种合成范式也已经在表面上开发,能够设计2D金属 - 有机设计,主要采用过渡和碱金属。[23–25]