摘要:纳米级机械谐振器引起了信号处理,传感器和量子应用的广泛关注。纳米结构中超高Q声腔的最新进展允许与各种物理系统和高级功能设备进行牢固的相互作用。那些声学腔对外部扰动高度敏感,由于这些响应是由几何和材料确定的,因此很难控制这些共振特性。在本文中,我们通过在光力学系统中混合高阶Lorentzian响应来演示一种新型的声学共振调节方法。使用弱耦合的语音晶体声腔,我们实现了二阶和三阶洛伦兹响应的连贯混合,这能够具有与设备的声学耗散率相当的共振范围的带宽和峰值频率的微调和峰值频率。这种新颖的共振调节方法可以广泛应用于洛伦兹响应系统和光学机械,尤其是针对环境波动和制造误差的主动补偿。关键字:光子综合电路,硅光子学,声学效应,片上布里群散射,光学机械
我们研究了第一原理中扭曲角度对石墨烯 / NBSE 2异质结构中接近旋转轨道耦合(SOC)的影响。将几个不同相称的扭曲超级电池的低能量狄拉克带与模型的哈密顿式化合物拟合,从而使我们能够详细研究SOC的扭曲依赖性。我们预测,从= 0°到= 30°扭曲角时,Rashba Soc的大小可以三倍。此外,以≈23◦的扭曲角度旋转旋转纹理可获得大径向分量,对应于RASHBA角度= 25°的RASHBA角度。通过分析狄拉克状态的轨道分解来揭示其最强大杂交的NBSE 2频段,从而解释了提取的接近SOC的扭曲角度依赖性。最后,我们采用了库拜公式来评估所研究的异质结构中常规和非常规的旋转转换的效率。
保留所有权利。未经出版商书面许可,不得以任何形式或任何手段(电子或机械,包括影印、录制或任何信息存储和检索系统)复制或利用本书的任何部分。
Amphenol 的 FM 系列柔性电路公刀片连接器旨在满足各种表面贴装模块设计。 FM 系列连接器最多可封装五排。 保持标准 NAFI 接口,同时柔性电路迹线提供与模块的链接。 柔性电路端接允许手工焊接或各种自动表面贴装焊接工艺。 铝制框架有多种配置可供选择,也可以定制设计以满足特定客户要求,包括同轴电缆、光纤和电源触点。
在母亲中,分娩后的Allopregnanolone迅速下降会导致GABA信号失衡。最多五分之一的女性可能会导致产后抑郁症,这是产后第一年的一种严重抑郁症。经过数十年的神经类固醇替代疗法的研究后,Allopregnanolone,Brexanalone的表述在2019年被美国食品药品监督管理局批准,是通过静脉输注的第一家可用于治疗产后抑郁症的药物。该药物设计的进一步改善导致Zuranolone在2023年获得批准,这是一种口服配方,比Brexanalone更容易施用。
在不断发展的nanomedicine中,定制机械性能o纳米凝胶以纳米凝胶,以使他们的生物逻辑per-per mance是一项引人入胜的途径。这项工作调查了一种创新的方法或调节Sti ness O hyaluronan-胆固醇(HACH)纳米凝胶,该区域仍然具有挑战性。通过grating多巴胺(DOPA)登上HA主链,通过紫外线,1 H NMR和FT-IR分析进行了特征,我们合成了一种新型的聚合物,该聚合物自发地在水性环境中自发ORMS纳米凝胶。这些HACH-DOPA纳米凝胶的特征是它们的小尺寸(〜170 nm),负电荷(约32 mV),高稳定性,ECIENT药物封装和有效的抗氧化活性(通过ABTS测试测量)。利用贻贝启发的金属协调化学,DOPA部分通过Catechol-Fe 3 +相互作用使纳米凝胶启用了STI ness调制。这种修改会导致交联的增加,因此,通过原子ORCE显微镜(AFM)测量,具有显着增加的STI nano-gel,其含量增加,并具有Hach-dopa@Fe 3 + Complex pH依赖性且依赖性且依赖性且可转化。通过在HUVEC和HDF细胞系上的WST-1细胞促进测定法评估了细胞相容性,没有明显的细胞毒性。此外,修饰的纳米凝胶表现出增强的细胞摄取,这表明它们的巨大潜在或细胞内药物递送应用,这是由CONCONOCAL显微镜测定法支持的假设。这项工作不仅为调节纳米凝胶sti ness提供了宝贵的见解,而且还可以推进新的纳米系统或有前途的生物医学应用。
多稳定元素通常用于设计可构造和自适应结构,因为它们可以响应变化的负载,同时允许自锁定能力,从而实现大型且可逆的形状变化。但是,现有的多稳定结构具有取决于其初始设计的属性,并且不能量身定制后制作。在这里,提出了一种新型的设计方法,该方法将多稳定结构与双向形状的记忆聚合物相结合。通过利用双轴应变条件下的单向和双向形状记忆效应,结构可以重新编程其3D形状,熊载荷和自我活性。结果表明,可以按照用户的需要调整结构的形状和态度,并且可以在命令上抑制或激活多稳定性。与常规的多稳定系统相比,多稳定性的控制可阻止结构的不希望捕捉,并具有更高的负载能力。提出的方法可能会增加现有多稳定概念功能的可能性,从而可能实现高度适应性的机械结构的潜力,这些机械结构可以在单声道和多稳定性之间可逆地切换,并且可以响应温度变化而经历形状变化。
识别支持环境温度下复杂可调磁序的材料是开发新型磁性设备架构的基础。我们报告了 Mn 2 XY 四方逆 Heusler 合金的设计,该合金能够承载磁性反斯格明子,其稳定性对弹性应变敏感。我们首先构建一个通用磁哈密顿量,捕捉这些材料中可能出现的短程和长程磁序。该模型揭示了接近磁相边界所必需的关键磁相互作用组合,其中磁结构极易受到弹性应变等小扰动的影响。然后,我们通过计算搜索可以实现这些关键相互作用的四元 Mn 2 (X 1 , X 2 ) Y 合金,这些合金很可能在逆 Heusler 结构中合成。我们认为 Mn2Pt1-zXzGa 材料系列(其中 X = Au、Ir、Ni)是获取所有可能磁相的理想系统,具有几种可以通过机械方式驱动磁相变的关键组成。
纳米结构的应用受到限制,因为事实证明,在制造之后修改其静态属性过于困难。[19] 为了解决这一重大问题并开辟在纳米尺度上动态控制光的途径,研究正转向具有可调特性的动态系统,例如基于相变材料[20–24]、掺杂的金属氧化物纳米晶体[25]和石墨烯[26–28]。受极强的氧化还原可调性的推动[29],我们最近引入了导电聚合物作为动态等离子体的新材料平台。[30] 导电聚合物以前曾被用来调节由金等传统金属制成的纳米结构的等离子体响应。 [31–34] 我们证明了高导电聚合物聚(3,4-乙烯二氧噻吩:硫酸盐)(PEDOT:Sulf)的纳米盘无需任何金属纳米结构即可用作动态等离子体纳米天线,聚合物本身由于其高移动性和大密度的极化子电荷载体(2.6×1021cm-3,由椭圆偏振法测定)而成为等离子体材料。[30] 令人兴奋的是,这些纳米天线可以通过化学调节聚合物的氧化还原状态来完全打开和关闭,这极大地调节了材料的电导率和光学性质。[30] 然而,调节过程基于暴露在气体和液体中,而未来的系统将需要更方便、更快捷的电调节。
天线孔径调谐对于使智能手机能够在不断增加的 RF 频段范围内高效运行以及支持向 5G 的过渡至关重要。智能手机需要更多天线来支持不断增长的 RF 需求,例如新的 5G 频段、MIMO 和载波聚合 (CA),但由于智能手机工业设计的变化,这些天线的空间越来越小。因此,天线变得越来越小,可能会降低天线效率和带宽。孔径调谐通过允许天线调谐以在多个频段上高效运行并将 Tx 和 Rx 性能提高 3 dB 或更多来弥补这一问题。孔径调谐是通过将开关与其他调谐组件相结合来实现的;具有低 RON 和低 COFF 的开关对于最大限度地提高效率至关重要。孔径调谐还允许天线同时在多个频段上通信以支持 CA。实施孔径调谐需要深入了解如何将该技术应用于每种应用。