摘要该系统旨在促进可再生能源的使用,并减少对不可再生能源(例如化石燃料)的依赖。该系统包括多个组件,包括光伏(PV)面板,风力涡轮机,电池存储,负载管理和主网格。这些组件的整合为家庭和企业提供了可靠且稳定的电力来源,尤其是在容易停电的地区。电池存储系统有助于平衡可再生能源的间歇性质,从而提供了更一致的电力。此外,该系统可以减少发电过程的碳足迹,并有助于减轻气候变化的影响。总的来说,实施PV式储存涡轮机载荷 - 货网系统有可能改变我们的生产方式和消耗电力,从而为子孙后代创造了更可持续和弹性的能源系统。
摘要:风力涡轮机叶片 (WTB) 是由复合多层材料结构组成的关键子系统。WTB 检查是一个复杂且劳动密集型的过程,其失败会给资产所有者带来巨大的能源和经济损失。在本文中,我们提出了一种用于叶片复合材料的新型无损评估方法,该方法采用调频连续波 (FMCW) 雷达、机器人和机器学习 (ML) 分析。我们表明,使用 FMCW 光栅扫描数据,我们的 ML 算法(SVM、BP、决策树和朴素贝叶斯)可以区分不同类型的复合材料,准确率超过 97.5%。SVM 算法的性能最佳,准确率为 94.3%。此外,所提出的方法还可以获得检测表面缺陷的可靠结果:层间孔隙率,总体准确率为 80%。特别是,SVM 分类器的最高准确率达到 92.5% 至 98.9%。我们还展示了检测复合材料 WT 结构中 1 毫米差异的气孔的能力,使用 SVM 的准确率为 94.1%,使用 Naïve Bayes 的准确率为 84.5%。最后,我们创建了物理复合材料样品的数字孪生,以支持 FMCW 数据相对于复合材料样品特性的集成和定性分析。所提出的方法探索了一种用于复合材料非接触表面和地下的新型传感方式,并为开发替代的、更具成本效益的检测方法提供了见解
摘要:涡轮发动机盘寿命预测和相关风险的理解仍然是当今设计师面临的重大挑战。尽管在材料测试和特性分析以及损伤容限和线性弹性断裂力学建模的应用方面取得了进展,但在正确评估载荷、几何形状和材料设计性能变化方面仍然存在空白。再加上先进的混合和复合材料系统的应用,准确处理材料变化的需求就更大了。仍然存在关键部件故障事件,而目前使用的现有分析方法、测试和检查无法正确解释这些事件。概率方法的应用提供了一种有效且有用的方法来建模这种变化,同时也提供了一种评估随机变量敏感性和风险评估的方法。目前的研究以及适用的行业和政府监管指南和出版物都已审查并将被介绍。本文将讨论最有效的工具、建模方法和预测故障风险评估,以及对未来工作的建议。本文介绍了概率方法在管理机队发动机和部件使用方面提供经济有效方法的潜力,以及其在机队管理中增强“因故退役”概念安全实施的能力。
国家可再生能源实验室和通用电气(GE)是添加剂和模块化的转子叶片和集成复合材料组装(AmeriCA)项目中的合作伙伴。美国旨在开发先进的制造解决方案,以减少劳动力和周期时间,同时增加风力涡轮机叶片的可回收性。该项目由美国能源部的高级制造业官员资助。本文介绍了新型制造过程的技术经济和生命周期分析,该过程应用于代表性3.4 MW陆基风力涡轮机的刀片的15米长尖端。我们与标准制造过程进行了比较,强调了挑战和机遇。几个不确定性影响分析,但我们强调了一个机会空间。使用了一套假设,采用高级制造的小费将降低21%,周期时间降低39%,总叶片提示成本降低15%,同时提高生产质量并采用可回收的热塑性树脂。生命周期分析将返回两个过程之间的气候变化影响和体现能量的可比指标。
风力涡轮机 (WT) 利用风能发电。因此,对风力涡轮机的控制和经济高效的运行进行了研究。控制系统具有使用寿命长、能量输出最大和安全性高等特点。在控制方法和控制策略方面,讨论了限制和优化能耗的各种方法。风力发电的整合可能会损害瞬态系统的稳定性。异步感应发电机无法处理风能应用中产生的无功功率。WT 通常设计为可承受恶劣天气,但不能承受高速度或高扭矩。强大的气动扭矩或转速能够破坏 WT 叶片。为了防止这种情况发生,WT 始终具有一个切断速度,超过此速度时,涡轮机将通过制动器停止运转。当过大的风速危及涡轮机的安全时,WT 会采用一系列控制技术。因此,所有 WT 均采用功率控制方法构造。这可以调节俯仰和失速。WT 可以应用被动或主动失速控制。因此,本研究分析了相关技术、风力涡轮机的维护、成本、多种类型的风力涡轮机控制器以及风能行业特有的负面影响和障碍。
22 年 11 月 6 日截至日期:数据来源:NMPBS(Inv)/NRMS(RE Rate)/N12(EPA/SSF)/BUPERS3(Adv Op)
简要总结:2021 年可再生能源 20%,风能和太阳能 - 12% 从上图可以看出,自 2002 年以来,化石燃料发电的使用率已从 73% 下降到 2021 年的不到 61%。特别是,据美国政府报告,煤炭发电的使用率已从 2002 年的 50% 以上大幅下降到 2021 年的 22% (1)。《华尔街日报》的文章还显示,天然气的使用率从 2002 年的 18% 显着增加到 2020 年的 42%。特别令人担忧的是,据美国政府报告,一年后天然气的使用率从 42% 降至 38.3%。天然气使用量减少 10.9% 似乎与现任拜登政府努力摆脱包括天然气在内的所有化石燃料直接相关。西弗吉尼亚州至弗吉尼亚州的天然气管道停运就是减少天然气使用的一个很好的例子。由于乌克兰战争导致天然气需求大幅增加,这条管道至关重要。天然气使用量扩大的另一个不幸事件是,现任政府阻碍了液化天然气出口新液化天然气设施的开发。能源发展的一个突出例子是,2021 年,太阳能发电量不到发电量的 3%,风力涡轮机发电量略高于 9%。太阳能和风能发展停滞的原因在于当地社区强烈反对在其社区安装太阳能和风力涡轮机。仅在 2021 年,就有 31 个风力涡轮机项目被当地社区阻止,13 个大型太阳能项目也被阻止或推迟 (2)。
本报告是作为由美国政府机构赞助的工作的帐户准备的。美国政府或其任何机构,也不是巴特尔纪念研究所,或其任何雇员,对任何信息,设备,产物或程序披露或代表其使用的任何法律责任或责任都没有任何法律责任或责任,或者对其使用的准确性,完整性或有用性都不会侵犯私人权利。以此处参考任何特定的商业产品,流程或服务,商标,制造商或以其他方式不一定构成或暗示其认可,建议或受到美国政府或其任何机构或Battelle Memorial Institute的认可,建议或赞成。本文所表达的作者的观点和观点不一定陈述或反映美国政府或其任何机构的观点和意见。
摘要:风力涡轮机和光伏等可再生能源是环保能源供应的关键。然而,它们不稳定的电力输出对供应安全构成了挑战。因此,具有存储能力的灵活能源系统对于可再生能源的扩展至关重要,因为它们允许存储非需求产生的电力并根据需要重新转换和供应。为此,提出了一种新颖的发电厂概念,其中高温储能 (HTES) 集成在传统微型燃气轮机 (MGT) 的回热器和燃烧器之间。它用于在供应过剩时存储可再生能源,随后用于减少 MGT 运行期间的燃料需求。因此,污染物排放显著减少,同时电网稳定。本文提出了一项数值过程模拟研究,旨在研究 HTES 的不同存储温度和负载曲线对 MGT 性能(例如燃料消耗、效率)的影响。此外,还推导出相关操作点及其工艺参数,如压力、温度和质量流速。由于燃烧室的运行条件受 HTES 的强烈影响,本文对其对燃烧室可操作性的影响进行了详细的理论分析,并对第一个适合该化合物的燃烧室设计进行了实验研究,并在较高的入口温度条件下进行了测试。
随着可再生能源和电力电子技术的渗透率不断提高以及系统惯性不断下降,快速频率调节 (FFR) 正成为提高电力系统频率稳定性的关键措施。尽管已经提出了不同的控制方法来为风力发电机 (WTG) 提供有限的虚拟惯性和频率支持能力,但尚未充分研究 WTG 和电池储能系统 (BESS) 之间的协调以及潜在的优化优势。本研究提出了一种 WTG 和 BESS 的协调控制,为交流系统提供 FFR,同时延长电池的循环寿命。首先,提出了一种经济高效且基于 SOC 的 BESS 单独 FFR 策略。然后,通过分析 WTG 的运行特性,提出了一种适用于所有风速下的 WTG-BESS 混合系统的协调 FFR 方法。提出的协调策略在不同运行条件下提高了 FFR 性能,延长了电池的循环寿命并降低了电池成本。基于变化风速的模拟结果表明,提出的FFR策略提高了频率最低点并避免了频率二次下降。