NERC 制定有助于维护或提高大型电力系统 (BES) 可靠性的指南符合公众利益。NERC 技术委员会(即运营委员会 (OC)、规划委员会和关键基础设施保护委员会 (CIPC))由 NERC 理事会 (Board) 授权根据其章程制定可靠性(OC 和规划委员会)和安全性指南 (CIPC)。1 这些指南针对特定主题制定了自愿行为准则,供 BES 用户、所有者和运营商考虑和使用。这些指南由技术委员会协调,包括行业的集体经验、专业知识和判断。本可靠性指南的目的是分发有关特定问题的关键实践和信息,这些问题对于保持最高水平的 BES 可靠性至关重要。可靠性指南不得用于提供具有约束力的规范或创建用于监控或强制执行标准合规性的参数。虽然纳入指导方针做法完全是自愿的,但强烈建议审查、修订或开发使用这些做法的计划,以促进和实现 BES 的最高可靠性。NERC 作为 FERC 认证的 ERO 2,负责 BES 的可靠性,并拥有一套工具来履行这一责任,包括但不限于以下内容:经验教训、r
由于固有的波动,风能整合到大规模的网格中会带来不稳定和其他安全风险。在本研究中,提出了使用多代理深钢筋学习,风力涡轮机(WT)的新协调控制策略和混合动力储能系统(HESS)是为了进行风能平滑的目的,其中HESS与转子动能和风力涡轮机的旋翼动能结合在一起。首先,通过自适应变化模式分解(VMD)预测风力发电量并分解为高,中和低频组件。然后,通过多代理双层列表深层确定性策略梯度算法(MATD3)进行高频和中频的参考功率的最佳二级分配,以平滑功率输出。为了提高学习的勘探能力,将一种新型的α-状态lévy噪声注入了MATD3的动作空间,并动态调节了噪声。模拟和RT-LAB半物理实时实验结果表明,提出的控制策略可以合理地充分利用WT和HESS组合生成系统的平滑输出功率,延长储能元件的寿命并降低WT的磨损。
迫切需要将可再生能源规划和生物多样性保护结合起来,以解决相互联系的气候变化和生物多样性损失危机并实现联合国的可持续发展目标7,13,而15。但是,在法国等许多国家中,限制可再生能源对生物多样性的负面影响的当前策略在计划过程中仍然存在主要局限性,可以通过建模方法克服。在这里,我们提出了一个新的基于建模的框架,旨在确定项目对生物多样性构成的Po Tential威胁。通过利用大规模标准化的公民科学生物多样性数据来创建生物多样性基准,该方法旨在更好地在不同阶段和项目前和项目后建设中更好地为生态影响评估(EIA)过程提供信息。我们证明了法国使用蝙蝠和陆上风能开发作为案例研究的实际应用。我们揭示法国可再生能源计划中的当前方法未能识别出具有生物多样性意义的地点,> 90%的风力涡轮机被批准用于构造的构造位置,以放置在蝙蝠具有很高意义的地点。未来风力涡轮机对蝙蝠造成的风险涉及所有分类单元(均受到欧盟的保护),包括具有较高碰撞风险的物种。我们强调了提出的基于建模的框架如何有助于对构建前和后结构后对生物多样性的影响进行更客观的评估,并成为EIA过程的普遍组成部分。它的实施可以促进一种更加生物多样性友好的方法来可再生能源计划,并与全球生物多样性框架到2030年停止生物多样性损失的目标保持一致。
航空弹性振动是由空气动力和风力涡轮叶片的结构动力学之间的复杂相互作用引起的,是导致疲劳,结构损伤,效率降低以及风力涡轮机系统中维护成本提高的主要原因。解决此问题对于增强风力涡轮机的运行性能,耐用性和寿命至关重要,这使得振动控制成为可再生能源行业的关键重点。本文研究了同步开关阻尼(SSD)模态方法,这是一种非线性控制技术,专门为其通过靶向和抑制不需要的振动模式而有效减轻航空弹性振动的能力。通过将压电组件与刀片运动和谐的指定电路同步,SSD模态方法可提供精确而适应性的振动控制。我们的研究证明了半活动模态SSD方法的有效性,从而降低了叶片振动的30.42%。这种实质性的减少不仅增强了整体性能,还可以增强风力涡轮机叶片的寿命,从而在振动控制策略方面取得了重大进步,并有助于开发更可靠和有效的风能系统。
4. 路边洼地应浅且坡度适中,以防止冲刷。在陡峭区域,应设置拦蓄坝以降低流速并提供源头控制淤泥遏制。必要时,拦蓄坝将与沉淀池和/或横向排水沟一起设置。
摘要:本研究评估了超级电容器作为储能单元在微电网可再生能源系统中有效提高能源自耗的效果。本研究评估了两种场景:(场景 A)光伏和储能系统;(场景 B)光伏、储能和风力涡轮机系统。系统分析使用天气和负载的实验数据进行,时间精度为 1 分钟。电力负荷曲线的日平均值为 5.0 kWh/天,最大峰值为 4.5 kW,用于计算电力负荷曲线的年能耗为 1859 kWh/年。研究表明,仅使用可再生能源为超级电容器充电可以大大提高能源的自耗。仅使用六个超级电容器(300 F – 2.7 V/单位),情景 (A) 中的年自耗百分比从 37.01% 增加到 46.65%,自给率百分比从 27.54% 增加到 41.69%,情景 (B) 中的年自耗百分比从 38.52% 增加到 48.75%,能源自给率百分比从 33.50% 增加到 49.87%。研究表明,通过加入微型、快速响应的能源存储,与没有能源存储的系统相比,所研究负载的年平均能源自耗有所增加,使其成为电池的有吸引力的候选者。
自 1970 年代以来,人们就开始使用水和蒸汽喷射来控制燃气轮机的 NOx 排放。在燃气轮机内部,燃料富集区会产生高火焰温度,这是燃料和空气同时混合并随后燃烧的结果。将水或蒸汽注入燃烧室的火焰区域可形成散热器,从而降低燃烧区温度并减少热 NOx 的形成。如报告前面所述,随着燃烧区温度的降低,NOx 的产生量会成倍减少。此过程中使用的水必须是高质量的(例如软化水),以防止涡轮机中出现沉积物和腐蚀。虽然许多联合循环设施可能在现场设有现有的软化水处理设施,但现有的简单循环设施通常没有。在这些情况下,可以选择建造或租用新的水处理设备,或将高质量的水运送到现场。
风力涡轮机叶片的报废处理方式多种多样,从商业上可用的填埋到新兴的结构二次利用。这些报废处理方式回收叶片所含增强纤维、树脂和填充材料的全部价值的能力各不相同。商业技术(如水泥窑进料)和近乎商业化的技术(如气化)通过回收树脂和填充物作为能源的价值以及将纤维作为低质量增强材料或矿物的价值来妥协。新兴技术(如热塑性树脂)有望回收高质量的树脂和纤维。
风力涡轮机一直处于可再生能源技术的前沿。许多美国人从欧洲的照片中注意到了这一发展:高大的白色风力涡轮机散布在连绵起伏的绿色山丘上。许多人看到了德克萨斯州在绵延数英里的草原上开发大型风电场的新闻,以及罗德岛州布洛克岛最近安装了美国第一台海上风力涡轮机的新闻[1]。美国可再生能源的未来将继续扩展到居民后院。经过数十年的风力涡轮机研究和开发,许多欧洲国家(如比利时和丹麦)在私人或社区使用的小型风力涡轮机方面引领市场——尤其是自从丹麦从社区购买风力涡轮机开始取得了惊人的涡轮机发展以来[2、3]。风力涡轮机最近变得更便宜、更小、更高效,也更容易运输和组装[4-6]。这项新技术使家庭可以为自己的房子购买风力涡轮机并连接到电网,以便能够将多余的电力卖回给公用事业公司或与邻居共享。计算应用方案中的点对点 (P2P) 方法已可以应用于其他领域,例如可再生能源领域。Y 世代,也称为千禧一代,在互联网诞生之时长大。虽然这一代人的童年与他们的父母相似——在户外玩耍直到路灯亮起——但这一代人的成年期发生在互联网发展到人们手中运行的时候,不再是拨号上网,而是通过无线手机电脑。这是人类开始在聊天室进行社交、开始使用电子邮件进行工作以及你可以在互联网上搜索无穷无尽的知识的时代。互联网为普通人获取周围世界信息的方式带来了惊人的变化。这一代人最关心环境,因为他们在成长过程中吸收了大量全球信息 [ 7 ]。今天,
本研究使用有限元分析 (FEA) 对涡轮叶片进行全面的热分析和静态分析,以评估两种先进材料的性能:钛合金 (Ti-6Al-4V) 和 Inconel 625。涡轮叶片使用 SolidWorks 建模,并在典型操作条件下使用 ANSYS 进行分析,以评估应力分布、变形、温度梯度和热通量等参数。钛合金 (Ti-6Al-4V) 以其重量轻和出色的强度重量比而闻名,使其成为需要减轻质量的应用的理想选择。相比之下,镍基超级合金 Inconel 625 具有出色的热稳定性、抗氧化性和高温下出色的机械性能。结果强调了这些材料之间的权衡:钛合金在中等温度下表现出更轻的重量和良好的机械性能,而 Inconel 625 在高温环境中表现出色,具有更好的抗热应力和变形能力。这项比较研究为涡轮叶片的材料选择提供了宝贵的见解,从而优化了其在高应力、高温应用中的性能和耐用性。