说明此信息请求(RFI)旨在为美国能源部(DOE)太阳能技术办公室(SETO)提供有关具体研究,开发和演示机会,以实现基于二氧化碳(SCO 2)的近期部署,以使基于二氧化碳(SCO 2)的涡轮机械用于集中型号的太阳能发电厂。背景是建立清洁,公平的能源经济并解决气候危机,Seto投资于创新的研究,开发和演示(RD&D)项目,这些项目致力于降低太阳能技术的成本并开发准备商业化的下一代产品。此RFI寻求信息来帮助促进到2035年到达无碳污染的目标,并“提供公平,清洁的能源未来,并使美国陷入实现2050年不迟于2050年的经济范围内实现零排放的道路。” 1 DOE致力于通过研究,开发,演示和部署(RDD&D)来推动科学和工程的前沿,促进清洁能源的工作,并确保环境正义以及服务不足的社区的包容。浓缩太阳能功率(CSP)是可再生能源的独特之处,可以耦合到长时间持续时间的热储能(TES)以驱动高效率的功率周期。由于需要较长的能量存储时间来启用清洁电网,因此CSP值的案例更强。要成功填补这一角色,CSP的成本必须继续通过世代的技术转变而下降。SETO的目标是CSP升级的电力成本(LCOE)为5¢/kWh的部分功率,该电力周期比当今的蒸汽兰金周期更高效,更便宜。将超临界二氧化碳(SCO 2)用作涡轮机械中的工作流体,用于布雷顿电力周期,这可能是实现SETO的LCOE目标的最佳机会。SCO 2技术也与集中太阳能技术共生,因为它可以随着温度提高其电能转化效率。
本文件中提供的所有数据均不具约束力。这些数据仅供参考,不作任何保证。根据后续的具体项目,相关数据可能会发生变化,并将针对每个项目单独评估和确定。这将取决于每个项目的具体特征,尤其是特定的场地和运营条件。版权所有 © MAN Energy Solutions。D2366707 GKM-AUG 1123 德国印刷
可以将预测性维护归类为(i)预后:预测失败并提前通知替换或修复(剩余使用寿命或简短的RUL通常用作预后方法,这是对设备或系统剩余寿命的估计,直到它变得无功能性[20]); (ii)诊断:通过因果分析或(iii)主动维护来预测未来失败的实际原因:预测并减轻故障模式和条件发展之前[6]。虽然主动维护捕获了潜在失败的根本原因,但预测维护执行了整体数据分析,以确保安排的维护。在本文中,将在预测性维护涡轮增压引擎的背景下进行研究[4,18]。
面对气候大挑战,人类和技术与环境互动的格局正在经历重大转变。有人曾经质疑我的研究选择,因为他们认为燃气轮机是一个正在消亡的研究领域,但当我展望我们面临的能源转型任务时,我最清楚地看到他们是多么错误。无论是航空、电力还是相关领域,我们工程师都非常幸运能够成为燃气轮机技术这一关键时期的积极参与者。我们正处于一个真正激动人心的时代。作为燃气轮机技术研究的首要场所,可持续、可靠和负担得起的解决方案的途径已嵌入本周将在 2023 年涡轮博览会上展示的 1000 多篇技术论文、50 个教程和 30 场小组讨论中。周一的主题演讲将邀请来自不同专业背景的行业领袖,他们将概述气候大挑战并从多个角度强调未来的解决方案。在周二的全体会议“燃气轮机为可持续未来”中,几家燃气轮机制造商的高管将讨论他们公司为实现可持续发展目标所做的努力和设想的技术。然后,周三的全体会议“劳动力发展和多样性:未来的工程师”将讨论该行业如何在动态劳动力市场中引导劳动力发展,同时解决劳动力的多样性、公平性和包容性问题。在周三下午的平行小组讨论中,来自美国和欧洲政府机构的代表将发表他们的观点,并讨论他们的融资机会和跨领域努力的目标。涡轮博览会颁奖典礼将与 ASME 和 ASME IGTI 获奖者一起举行
四十多年来,Fluorosint ® 500 PTFE 一直是耐磨聚合物密封件的行业标准。在气体分配泵系统中,喘振现象很常见。为了解决这个问题,叶轮和扩散器之间会留出较大的间隙,导致机器效率低下。为了减少间隙并提高压缩机性能,添加 Fluorosint ® 500 PTFE 护罩插件是解决方案。作为额外好处,除了效率提高之外,Fluorosint ® 500 PTFE 还成为牺牲组件,在发生接触时可防止高价叶轮被损坏。
如今,推力轴承承受着不断增加的速度和负载,同时又受到空间狭小的限制,并将体温保持在 API 要求的范围内。因此,轴承制造商不断寻找满足客户需求的下一款“超级轴承”。本文介绍了三种不同的均衡推力轴承设计及其在试验台上的性能。第一种设计是传统的浸没式轴承,其余两种设计是定向润滑轴承。所有轴承均衬有 ASTM 2 级巴氏合金,并具有相同的高 (65%) 枢轴偏移,以帮助它们在极端测试条件下生存。轴承承受的负载增量在几种不同的轴速下终止于触发警报的温度。测试表明,其中一种定向润滑设计能够比其他两种设计承受更高的轴承负载,同时在中高速度下具有较小的轴承面积(平均轴承直径为 206-345 fps (62.8-105.2 m/sec))。我们声称,这种轴承设计是满足上述客户需求的一步。我们进行了初步的计算流体动力学模拟,以研究设计中的流动模式,希望深入了解其冷却机制。最后,我们证明了根据经典热油携带理论重现单个轴承性能的难度。
摘要:近年来,航空业在燃油消耗、维护和性能方面取得了重大技术进步。在燃油效率和排放最小化方面,最有希望的发展是未来几代涡轮螺旋桨飞机(即由螺旋桨产生推力的飞机)。涡轮螺旋桨飞机的一个重要缺点是它们的客舱往往更嘈杂,而且由于音调的存在,振动会导致不适程度增加。人的舒适感是飞机制造商在机身和飞机内饰设计中的关键因素。噪音和振动是飞机客舱不适的主要来源;因此,飞机制造商正在寻求根据噪音和振动测量来估计乘客的不适感,以优化飞机设计。本研究的目的是建立一个飞机舒适度模型,使设计师和工程师能够优化乘客的旅行体验。本文介绍了一项实验室研究,确定了噪音和振动对涡轮螺旋桨飞机客舱的相对重要性。结果表明,随着噪音水平和振动幅度的增加,人体整体不适感也随之增加。提出了一种线性舒适度模型,可以通过测量涡轮螺旋桨飞机的噪音和振动来预测整体不适感,从而优化飞机客舱。
在 IT 环境飞速变化的时代,如果无法全面了解整个 IT 资产,就不可能优化 IT 支出。在当今的数字世界中保持竞争力需要企业优化其技术投资。对于 IT 领导者来说,了解其 IT 资产中的运行情况及其对业务计划的影响非常重要。然而,根据 Flexera 的 2021 年 IT 可视性状况报告,不到 25% 的 IT 领导者对其 IT 资产有完全的了解,导致大多数组织对其资产的了解不完整。
绿色柴油的混合速率显着提高,使生产商能够在其最终产品中获得较低的碳强度。碳强度是一种测量特定燃料的生产和燃烧中发出多少碳的方法。源自原油的汽油,喷气燃料和柴油的汽车强度约为100。生物燃料来自非原油原料的生物燃料的碳强度阀较低,低至20个,具体取决于用作原料的原材料。总体碳强度通常会驱动监管信用,因此
摘要:从飞机的角度来看,从涡扇发动机中提取大量电能的可能性越来越大。未来战斗机的功耗预计将比今天的战斗机高得多。该领域的先前工作集中在高涵道比发动机的功率提取研究上。这促使我们彻底研究低涵道比混流涡扇发动机的性能潜力和局限性。建立了低涵道比混流涡扇发动机模型,并模拟了战斗机任务的关键部分。调查显示了高压涡轮的功率提取如何影响军用发动机在飞行范围内不同任务部分的性能。分析得出的一个重要结论是,如果满足特定的操作条件,可以在高功率设置下从涡扇发动机中提取大量功率,而不会对推力和单位燃料消耗造成太大的损失。如果发动机 (i) 以最大总压力比或接近最大总压力比运行,但 (ii) 远离最大涡轮入口温度极限,则功率提取对发动机推力和推力比燃料消耗的不利影响将受到限制。另一方面,如果发动机已经以最大涡轮入口温度运行,则高压轴的功率提取将导致推力大幅下降。所提出的结果将支持对未来战斗机发动机的战斗机任务优化和循环设计的分析和解释,这些发动机旨在实现大功率提取。这些结果对于飞机设计也很重要,更具体地说,对于确定飞机功率消耗者的最佳能源也很重要。