航空发动机压气机的设计重点是巡航飞行阶段的性能。当发动机运行状态偏离设计状态时,压气机需要将气流保持在限制范围内并防止失速和喘振的系统 [13]。为了确保这一点,有效的方法之一是引入 VBV 系统,该系统已广泛应用于现代大涵道比涡扇发动机,大多位于助推器出口处。对于 VBV 以能量利用效率换取助推器喘振裕度而言,VBV 位置控制功能既影响发动机性能也影响发动机安全性。因此,该功能应体现发动机性能和安全性之间的平衡。如果 VBV 位置控制功能执行不正确,将影响发动机性能和发动机安全性。尽管如此,VBV 位置控制功能应满足 FAR33 中规定的最低安全要求。因此,本文仅研究安全系数的方法是合理的。航空发动机在瞬态过程中的失效机理非常复杂,这使得航空发动机的安全性分析很难完成。VBV位置控制功能失效将通过发动机重匹配过程影响整个发动机,而发动机重匹配过程受发动机非线性方程控制。经验,
我相信有句老话“好东西值得等待”。任何参与过新飞机开发的人都知道,等待认证的时间总是比预期的要长——尤其是当它是一种全新的飞机型号时。但等待就一定会更好吗?就 Piperjet Altaire 而言,我们认为答案是肯定的。概念验证机最初是 PA-46 机身的加长版,但它发挥了更大的作用。它证明了你可以在机身顶部安装一台涡扇发动机——高推力线等等——并拥有一架性能出色、在任何速度下都顺从的单引擎喷气式飞机。现在,在新所有权集团的领导下,以及经过彻底改造和升级的技术和营销人员,Piper 准备生产一款高度精炼的版本,并于 2014 年交付。新款 Altaire 将采用更大、完全圆形的机身,提供更多的头部和腿部空间,以及 Garmin G3000 航空电子设备。那么在 2014 年之前您要做什么呢?飞行、训练和升级。事实上,Piper 有几项激励计划,将当前生产的飞机(如 Matrix、Mirage 或 Meridian)与购买新的 Piperjet Altaire 联系起来。如果您对这架飞机或我们杂志上看到的其他任何东西感兴趣,请随时致电我们了解更多信息。
飞机或旋翼机燃气涡轮发动机某些关键子系统的电气化为下一代航空发动机提供了许多宝贵的优势,如减轻重量、降低能耗、提高子系统和整个推进系统的效率、加快响应速度、更快更容易维修、比液压和气动系统可靠性更高、减少油耗、提高有效载荷能力、降低总生命周期成本、提高可维护性、发动机维护和操作更清洁、更好地分配机载资源、为维护和客户提供实时数据、提高健康监测能力等。发动机子系统的电气化还可以开发新的创新型飞机和发动机配置,例如,去除笨重而复杂的(发动机和/或飞机)附件驱动变速箱(ADG)或为 IGV、推力反向器门或任何其他可变几何部件引入和使用更多的 EMA(机电执行器)。在发动机和子系统(如润滑系统)中集成更多更智能的传感器是另一个明显的优势(例如油渣监测传感器或油箱液位传感器)。还将讨论更多电气子系统的集成,并了解与电源和热管理相关的固有风险(参见 AVT-RTG-333“将推进、电源和热子系统模型集成到飞行器概念设计中”)。因此,建议对涡扇和涡轴子系统电气化的当前趋势进行分析,并组织关于此主题的 RSM,目的是将 AVT 小组定位在此技术发展的前沿。背景
达索航空公司在今年的 NBAA 大会上宣布推出猎鹰 900EX,引起了不小的轰动。这款最新的宽体三引擎猎鹰飞机虽然与航程 4,000 海里的 900B 几乎没有区别,但当 1996 年 4 月开始生产交付时,在 NBAA IFR 备用燃油条件下,将能够搭载 8 名乘客飞行 4,500 英里。值得注意的是,航程的增加将使 900EX 比其在 3,000 万美元以下商务飞机类别中的主要竞争对手有大约 300 海里的优势。多年来,达索一直渴望为其空气动力学上滑溜溜的大客舱商务飞机提供这种性能优势。与 900B 类似,猎鹰 900EX 的性能提升主要归功于其 AlliedSignal TFE731 涡扇发动机的革命性改进。 (见侧边栏)与 900B 的 -5B 涡扇发动机相比,900EX 的新型第二代 -60 发动机具有三重优势:更大的起飞推力、更大的高空巡航推力和更高的燃油效率。对运营商来说同样重要的是,-60 发动机的额定温度为 ISA+17°C,而 -5B 涡扇发动机的额定温度为 ISA+10°C,这将带来出色的高温和高空跑道性能——这已经是猎鹰 900B 的强项之一。低空和高空推力的增加将使猎鹰 900EX 几乎能够匹敌 900B 的跑道和爬升性能,尽管 900EX 的最大起飞重量将比 900B 多 2,800 磅。两个附加机身油箱(一个位于机翼前方,一个位于机身后部)
NASA提出了亚音速单尾电动发动机概念(SUSAN),以满足对电气化飞机设计的不断增长的需求,这有可能将CO 2排放量减少50%并限制航空的环境影响。苏珊的推进系统由一台涡轮扇发动机和16个分布式电动推进器组成。它被设计为一种商业运输,可容纳180名乘客有效载荷,载有2,500海里,同时以0.785的马赫和37,000英尺的速度巡航Susan的设计包括多种高级技术,例如具有边界层摄入,分布式电气推进系统的单个AFT发动机,以及几个州立电动电动子系统。本文整合了在单个建模和仿真环境中为苏珊开发的各种技术和方法。Susan是使用密歇根大学开发的未来飞机尺寸工具(快速)建模的。使用飞机规格和从文献中收集的设计任务概况,快速评估Susan及其集成技术的系统级别的可行性和性能。引入了其他推进系统和BLI模型,以将Susan的先进技术纳入其设计中。由此产生的Susan型号的MTOW为189,394 lbm,OEW为117,460 lbm,设计任务为30,701 lbm的预测块燃料燃烧。Susan模型的高升力比为20.49,鼓励进一步研究这些高级技术如何降低对控制表面尺寸的依赖并提高飞机总体上的效率。快速预测AFT发动机0.4372 lbm/(LBF·HR)的巡航TSFC,其中包括BLI技术的效果。
与许多其他行业一样,航空发动机和燃气轮机行业也在向数字化转型。其目的是使数字技术适用于产品的整个生命周期,从而改善规划、设计、建造、装配、运行和维护。数字线程或数字孪生等智能数字化技术将彻底改变工程和施工流程。因此,初步的航空发动机设计也必须嵌入数字化环境中。作为 PEGASUS 和 PERFECT 项目的一部分,德国航空航天中心 (DLR) 已开始开发虚拟发动机平台 GTlab(燃气轮机实验室)。其模块化架构确保了创新的下一代发动机和燃气轮机概念的设计和评估具有高度的可用性、可扩展性和灵活性。本文的目的是介绍 GTlab 框架的最重要方面,以及它们如何有助于满足数字化背景下初步航空发动机设计的要求。一个中心主题是发动机系统的数字化表示,这是通过中央数据模型方法实现的。这包括所有发动机部件的几何描述,以及热力学、空气动力学、结构特性和质量分解等附加数据。此外,中央数据模型可实现高效的管理
B-1 Lancer 简介:一种远程多用途轰炸机,无需加油即可执行洲际飞行任务,然后携带大量弹药突破敌方防御。功能:远程常规轰炸机。运营商:ACC、ANG。首飞:1974 年 12 月 23 日(B-1A);1984 年 10 月 18 日(B-1B)。交付:1985 年 6 月 - 1988 年 5 月。初始作战能力:1986 年 10 月 1 日,德克萨斯州戴斯空军基地(B-1B)。生产:104 架。库存:93 架(B-1B)。单位所在地:现役:德克萨斯州戴斯空军基地、南达科他州埃尔斯沃斯空军基地、爱达荷州芒廷霍姆空军基地。ANG:堪萨斯州麦康奈尔空军基地、佐治亚州罗宾斯空军基地。承包商:波音北美公司;AIL 系统公司;通用电气公司。动力装置:四台通用电气 F101-GE-102 涡轮风扇发动机,每台推力 30,780 磅。 座位:四人,飞行员、副驾驶和两名系统军官(进攻和防御),坐在零/零弹射座椅上。 尺寸:翼展 137 英尺,后掠 78 英尺,长度 147 英尺,高度 34 英尺。重量:空重 192,000 磅,最大工作重量 477,000 磅。升限:超过 30,000 英尺。性能:低空高亚音速最大速度;高空速度 1.2 马赫;洲际航程。 武器:三个内部武器舱,常规任务中可容纳多达 84 枚 Mk 82(500 磅)炸弹或 Mk 62 水雷和多达 30 枚 CBU-87/89/97。评论 B-1 采用翼身融合式结构,可变几何设计和涡扇发动机相结合,可提供更大的航程和低空高速,并增强生存能力。后掠翼设置允许从较短的跑道起飞
随着业界设定了到 2050 年实现零碳排放的最后期限,可持续性已成为重中之重。从发动机制造商到飞机制造商,每个人都在提出保证环保的举措。在接受 SP’s Aviation 的独家采访时,湾流总裁马克·伯恩斯 (Mark Burns) 分享了他对新推出的 G400 和 G800 的看法,以及该公司通过这些产品和更多产品对可持续性的关注。G400 和 G800 还可以使用可持续航空燃料 (SAF) 飞行。制造商计划在整个飞行测试计划中使用 SAF。此外,巴西制造商巴西航空工业公司最近推出了 Energia 系列,由四种新飞机概念组成,这些飞机将使用可再生能源推进技术。在 Ayushee Chaudhary 的一篇文章中,本期杂志介绍了巴西航空工业公司“可持续发展行动”计划的最新内容,该计划旨在从 2030 年开始将其碳排放量减少 50%。本月的杂志还在 Ayushee Chaudhary 的两篇文章中介绍了航天工业通过美国宇航局的帕克太阳探测器和詹姆斯韦伯望远镜见证的激动人心的任务。帕克太阳探测器发射三年后成功飞过太阳的高层大气——日冕。韦伯望远镜是迄今为止最大、最复杂的空间科学观测站,旨在探索宇宙中以前隐藏的区域:早期星系、形成中的行星、棕色
本文档报告了一项研究的结果,该研究旨在评估事故和事件的原因和促成因素,在事故和事件中,单个良性推进系统发生故障,而飞行员没有适当处理该情况。这项研究是为了回应联邦航空管理局 (FAA) 1996 年 3 月 6 日的一封信而进行的,该信要求航空工业协会 (AIA) 使用 AIA 以前的活动和最近事故的数据作为制定发动机故障指示系统指南的基础。AIA 于 1996 年 6 月 19 日回复 FAA 的一封信,提议开展所要求的活动。AIA 提议,活动的初始重点将是收集与历史事故和事件相关的所有相关事实和数据、各种缓解方法的经验、固定基座和运动基模拟器的能力和程序,以及其他适用于彻底研究发动机故障和不当机组人员反应的相关信息。数据收集过程完成后,后续阶段将分析和综合这些数据,以准备建议的纠正措施。AIA 写道,AIA 认为,各方最好不要过早地专注于“解决方案”。完成这项工作后,将采取决策关口,然后决定如何进入其他阶段,这些阶段可能会建议多种路径并增加
本文档报告了一项研究的结果,该研究旨在评估事故和事件的原因和促成因素,在事故和事件中,单个良性推进系统发生故障,而飞行员没有适当处理该情况。这项研究是为了回应联邦航空管理局 (FAA) 1996 年 3 月 6 日的一封信而进行的,该信要求航空工业协会 (AIA) 使用 AIA 以前的活动和最近事故的数据作为制定发动机故障指示系统指南的基础。AIA 于 1996 年 6 月 19 日回复 FAA 的一封信,提议开展所要求的活动。AIA 提议,活动的初始重点将是收集与历史事故和事件相关的所有相关事实和数据、各种缓解方法的经验、固定基座和运动基模拟器的能力和程序,以及其他适用于彻底研究发动机故障和不当机组人员反应的相关信息。数据收集过程完成后,后续阶段将分析和综合这些数据,以准备建议的纠正措施。AIA 写道,AIA 认为,各方最好不要过早地专注于“解决方案”。完成这项工作后,将采取决策关口,然后决定如何进入其他阶段,这些阶段可能会建议多种路径并增加
