Priscilla Cox 埃尔克格罗夫 USD CSBA Cindy Gappa 蒂哈马 COE ACSA Gail Kirby 圣玛丽学院 AICCU Eloise Lopez Metcalfe 加州大学洛杉矶分校 UC Theresa M ontaño 加州州立大学北岭分校 CTA Susan Rich Stanislaus COE CCESSA Sue Westbrook 加州教师联合会 CFT Ruth Yopp-Edwards 加州州立大学富勒顿分校 CSU Wendy Baron 圣克鲁斯 加州大学圣克鲁斯分校 COE/新教师中心 Michelle Cepello 加州州立大学奇科分校 Lewis Chappelear 洛杉矶 USD Nancy Farnan 圣地亚哥州立大学 Helen Garcia Rockett 加州州立理工大学波莫纳分校 Ira Lit 斯坦福大学 Paula Lovo Ventura COE Robert McClurg Rescue USD Betty McEady Chapman 大学学院 Cara Mendoza Fairfield-Suisun USD Marisol Rexach 圣安娜 USD Luis Rodriguez 洛杉矶 USD Jodie Schwartzfarb 新Haven USD Steve Turley 加州州立大学长滩分校 Andrea Whittaker 圣何塞州立大学 Ting Sun 委员会联络人员 与 CSTP 咨询小组合作 Terry Janicki 教师资格认证委员会 Karen Sacramento 教师资格认证委员会 Teri Clark 教师资格认证委员会 Edna Shoemaker 加州教育部 Ellen Ringer 加州教育部
Bethani Turley,Alida Cantor,Kate Berry,Sarah Knuth,Dustin Mulvaney,Noel Vineyard摘要政府,公用事业和能源公司越来越寻求能够储存的储能技术,以扩大可变可再生能源的可用性,例如太阳能和风能。 从这个角度来看,我们通过绘制和分析整个美国西部出现的可再生能源存储的景观来研究这些快速变化的发展。 我们专注于推出几种相互关联的领先技术:公用规模的锂离子电池,通过增加区域锂开采的支持以及针对新的抽水储存水力发电的建议。 利用关键资源地理位置,我们将储能既是可再生过渡的组成部分,又是其自己的景观转化,资源提取和冲突的驱动力。 通过绘制和解释新兴的西方景观,我们表明,领先的储能技术和制造它们所需的材料可能需要广泛的露天土地利用并产生重大的区域用水影响,并且它们正在与关注环境退化和(在)正义中的群体产生对立。 我们为未来的储能研究议程提出了一个议程,旨在使其发展在社会学上更有益和公正。 关键字:美国西部,可再生能源过渡,能源存储,锂,水力发电介绍:“太阳并不总是闪耀,风并不总是吹!”因此,对可再生能源的批评也是如此。Bethani Turley,Alida Cantor,Kate Berry,Sarah Knuth,Dustin Mulvaney,Noel Vineyard摘要政府,公用事业和能源公司越来越寻求能够储存的储能技术,以扩大可变可再生能源的可用性,例如太阳能和风能。从这个角度来看,我们通过绘制和分析整个美国西部出现的可再生能源存储的景观来研究这些快速变化的发展。我们专注于推出几种相互关联的领先技术:公用规模的锂离子电池,通过增加区域锂开采的支持以及针对新的抽水储存水力发电的建议。利用关键资源地理位置,我们将储能既是可再生过渡的组成部分,又是其自己的景观转化,资源提取和冲突的驱动力。通过绘制和解释新兴的西方景观,我们表明,领先的储能技术和制造它们所需的材料可能需要广泛的露天土地利用并产生重大的区域用水影响,并且它们正在与关注环境退化和(在)正义中的群体产生对立。我们为未来的储能研究议程提出了一个议程,旨在使其发展在社会学上更有益和公正。关键字:美国西部,可再生能源过渡,能源存储,锂,水力发电介绍:“太阳并不总是闪耀,风并不总是吹!”因此,对可再生能源的批评也是如此。可再生能源(例如太阳能和风能)产生可变量的电力,从而使电力供应与每日和季节性需求相匹配[1]。随着可再生能源成为关键的气候行动优先级,这种新兴困境已获得了新的紧迫性,并且可再生能源开始达到高水平的部署。在美国领先的可再生能源州加利福尼亚州,甚至还有一个深情的区域性术语“鸭曲线”。我的平衡或鸭曲线问题促进了储能和整合到可再生能源项目和电网中的储能,并得到了联邦和州政策激励措施和部署规定的支持[2]。对资源的需求 - 关键的金属,矿物质,土地和水,需要生产和站点这些储能基础设施正在重塑或准备重塑社会,文化和物理空间,以各种方式在空间,时间和地点以及许多范围内以各种方式进行。推动储能项目和供应链的发展正在改变当代能源景观[3,4],并开放了新的资源前沿。在2020年,美国占全球目前运营的储能项目的40%,国家可再生能源实验室预计美国将超过
弹性植物的生长取决于分生组织的功能,包括芽顶分生组织(SAM),根尖分生组织(RAM)和侧向分生组织。血管形成是侧向分生组织,负责径向轴处的二次生长和茎膨胀。血管形成库的干细胞增殖,而后代分化为木质部和韧皮部细胞。每个径向细胞文件都有一个双种族干细胞,该干细胞同时产生木质部和韧皮部细胞谱系(Shi等,2019; Smetana等,2019)。确实成菌的干细胞和未分化的木质部和韧皮部祖细胞形成一个形糖化区域,通常用作形糖化活性的指标(图1A)。顶端分生组织和血管分生组织在空间上分离。这些分生组织之间的协调生长是通过移动信号(例如激素,肽和机械提示)介导的(Fischer等,2019)。环境因素在调整二次增长方面也起着重要作用。二级增长是一种进化创新,可为更大,更复杂的植物体提供足够的机械支持和有效的长距离流体传输(Tonn and Greb,2017)。此外,二级生长还会产生大量的木质生物量,顽固形式的碳形式,可以通过将大气碳固定在存储中,从而有可能减轻全球变暖。主要的血管发育是在胚胎发生期间早期建立的(Miyashima等,2013)。前尾首字母开始在全球阶段分裂,形成类似于胚胎后根血管的径向模式(Rodriguez-Villalon等,2014)。在最近的几篇优秀评论论文中讨论了调节原发血管发育的信号传导途径(Fischer和Teichmann,2017年; Tonn和Greb,2017; Wang,2020; Turley and Etchells,2022; Wang等,2023)。本文主要关注调节植物血管确实活性和继发生长的进步。