此前,飞机机身结构中连接机翼机身和垂直尾翼机身的吊耳已提交有限元分析 [2-3]。由于快速加速和复杂运动,机翼表面将承受巨大的载荷 [4]。由于弯矩最大,机翼根部将承受最大的应力集中 [5]。支架用于将机翼固定在机身框架上。机翼的弯矩和剪应力通过这些附件传递到机身 [6]。此外,疲劳是指结构部件强度在运行过程中不断下降,在极低的极限应力水平下就会发生故障。这是因为重复载荷作用的时间较长。基于静态结构分析,利用应力寿命技术和 Goodman 标准进行的疲劳寿命计算预测几何形状是安全的 [7]。因此,机翼机身吊耳连接结构采用有限元分析和疲劳寿命计算方法进行设计。
此前,飞机机身结构定义几何形状中连接机翼机身和垂直尾翼机身的凸耳已提交有限元分析 [2-3]。由于快速加速和复杂运动,机翼表面将承受严重载荷 [4]。由于最大弯矩,机翼根部将经历最高的应力集中 [5]。支架用于将机翼连接到机身框架。机翼的弯矩和剪应力通过这些附件传递到机身 [6]。此外,疲劳是指结构部件强度在运行过程中持续下降,在极低的极限应力水平下就会发生故障。这是由于重复载荷作用时间较长。基于静态结构分析,利用应力寿命技术和 Goodman 标准进行的疲劳寿命计算预测几何形状是安全的 [7]。因此,机翼机身凸耳连接结构采用有限元分析和疲劳寿命计算方法进行设计。
为避免对受保护的海洋哺乳动物物种造成伤害并将任何潜在干扰降至最低,将对所有操作脉冲式测量设备的船只实施以下措施,这些设备发出的声音频率范围小于 180 kHz(在海洋哺乳动物和海龟的功能听力范围内),以及 CHIRP 海底剖面仪(这不适用于参数海底剖面仪、超短基线、回声测深仪或侧扫声纳;声学特性(频率、窄波束宽度、快速衰减)不会对受保护物种产生影响)。清除区是指在声源开启前 30 分钟内,声源周围需要目视清除 ESA 所列物种的区域。清除区相当于开始测量操作的最小能见度区域(见下文第 1 条)。关闭区是指声源周围必须进行监控的区域,一旦检测到 ESA 所列鲸鱼物种进入该区域或在该区域内,则可能关闭该区域。对于清理区和关闭区来说,这些都是最小能见距离,为了了解情况,PSO 应该尽可能观察该区域以外的情况。
• 根据《清洁水法》,任何人未经许可将点源污染物排放到可航水域都是违法的。根据《清洁水法》第 402 条(EPA 2013 船舶通用许可证 (VGP)),EPA 对所有长度超过 24 米(79 英尺)的非娱乐性、非军用船只在美国水域正常运行时发生的排放进行监管。• 任何尺寸的小型船舶和渔船都必须遵守 EPA 2013 VGP 和美国海岸警卫队压载水法规 33 CFR 151.10 中规定的压载水排放要求。• 遵守当地政府、加利福尼亚州、美国海岸警卫队和 EPA 对船舶排放的适用许可证和监管要求• 船舶运营商将遵守 33 CFR 151.51-77 中概述的污染法规,因此预计只会意外产生垃圾和杂物。海洋哺乳动物和海龟 船舶交通和噪音对海洋哺乳动物的干扰
图1。纽约市天气文件类型的加热和冷却天数..................... 20图2。纽约布法罗市的天气文件供暖和冷却天数.......... 21图3。纽约Saranac Lake的天气文件类型的加热和冷却天数.....................................................................................................................................................................................................................................................tmy3与ftmy空气温度按月在纽约布法罗的月度下午。22图5。TMY3与纽约州布法罗市按月按TMYX空气温度与TMYX空气温度TMY3与纽约Saranac Lake按月按月的FTMY空气温度.................... 24图6。纽约州布法罗的心理图表 -Passive Strategies for Buffalo, New York .................................................................... 26 Figure 8.纽约市的被动策略................................................................................................................................................................. 27图9。纽约萨拉纳克湖的被动策略..................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... 28图11。结束使用纽约市的天气文件类型的EUI ................................................................................................................................................................................................................................................................................................................................................................................................. 32图12.高峰需求最终使用纽约市天气文件类型的故障............................................................................................................................................................................................................................................................................................................................................... 33图13。HVAC运行时间按天气文件类型的纽约市..................................................................................................................................................................................................................................................................................................................................................................................................................... 34图14。 End Use EUI by Weather File Type for Buffalo, New York ........................................ 35 Figure 15.HVAC运行时间按天气文件类型的纽约市..................................................................................................................................................................................................................................................................................................................................................................................................................... 34图14。End Use EUI by Weather File Type for Buffalo, New York ........................................ 35 Figure 15.峰值需求最终使用纽约布法罗天气文件类型的故障。...36图16。HVAC Run Times by Weather File Type for Buffalo, New York ................................ 37
1亨廷顿大学,印第安纳州亨廷顿/美国摘要简介:本研究的目的是确定卡路里支出和打字速度在三个位置(坐着,站立,步行)之间是否有所不同。方法:参与者包括40名大学生(18-22岁,30名男性和10名女性),无论是棒球还是田径队。在三个不同的位置上测试了每个参与者5分钟。通过间接量热法和通过3分钟的分型测试进行生产力来测量热量支出。进行了重复测量方差分析和t检验,以确定卡路里消耗和打字速度的统计差异。结果:步行(16.4±3.1)的热量支出(每5分钟的卡路里)明显高于坐着(9.0±2.4,p <0.0001)和站立(9.4±2.0,p <0.0001)。用于打字生产率,站立的速度比步行速度快(37.4±10.2 vs. 34.7±10.7 wpm,p = 0096)。结论:使用站立式步行台在工作时打字的时间比坐着或站在桌子上打字的卡路里要多得多。但是,站在桌子上时的打字速度明显高于在桌子上行走时。关键词:卡路里,工作站,生产力通讯作者:Fred Miller III,fmiller@huntington.edu介绍成人平均每天持续7至9个小时。在大学生中,据报道,花在久坐行为上的时间更高,每天为11.88小时。对步行时对认知表现的可能负面影响提出了问题。同样,包括二十三个研究的数据的系统综述也报道了在本科生中的平均时间为11.10小时,这些时间是由域特异性问题衡量的,每天通过加速度计测量的10.69小时。当前的研究得出的结论是,需要进行研究和干预措施,重点是减少本科生的久坐时间3。一项先前的研究得出的结论是,以自我选择的速度行走并没有损害认知表现,办公室和教室应考虑实施主动工作站4。另一项研究发现,以中等速度行走(2.25 km/hr)行走时的打字性能与坐着时的打字性能相似,但是,在较慢(1.3 km/hr)和
摘要:本文利用了典型的土耳其自助生活空间的两阶段需求响应能源管理算法。提议的能源管理模型通过根据使用静态使用时间安排在家中的富裕负载和储能系统来提供额外的收益,以实现自我耐高率的目标。在自助力,经济增长和投资表现的范围内评估了负载调度和电池优化的影响。根据结果,提议的两阶段结构在单块场景中提供了9.5%的净储蓄增加,并且在设计中使用三个电池上升至14%。另一方面,当我们通过投资回报率(ROI)计算检查能源管理方案时,我们看到,由于电池成本的增加,单电池系统的ROI高于两个或三个电池系统。此外,在拟议的家庭能源管理系统(HEMS)模型中,ROI值无需优化而无需优化的13.9%。可以从此计算中可以看出,电池的智能管理和富裕载荷可增长10%的ROI值。