图 1 苯丙酮尿症 (PKU) 是由苯丙氨酸羟化酶 (PAH) 基因的隐性遗传变异引起的(图 A)。苯丙氨酸羟化酶 (PAH) 是一种同源四聚体,可催化苯丙氨酸 (Phe) 不可逆转化为酪氨酸 (Tyr)。该反应需要还原四氢生物蝶呤 (BH 4 )、铁和分子氧作为辅因子(未显示)。在没有 PAH 活性的情况下,苯丙氨酸会在组织中积聚,并以非酶促方式脱氨基为苯丙酮酸,并进一步氧化为其他苯酮,从而得名苯丙酮尿症 (PKU)。双等位基因 PAH 变体编码变体 PAH 信使 RNA (mRNA),然后导致不稳定、活性较差或无活性的 PAH 蛋白,以及肝脏中将 Phe 羟基化为 Tyr 的能力受损。基因疗法 (图 B) 旨在通过基因添加或基于 CRISPR/Cas 的基因或碱基编辑来恢复肝脏 PAH 表达;即,几种实现此目标的不同治疗方法正在小鼠身上进行临床前研究,包括 (1) 基因添加、(2) 通过脂质纳米颗粒 (LNP) 递送治疗性 mRNA、(3) 基因编辑/校正或 (4) 基因插入。目前,基因添加最常见的尝试是通过使用重组腺相关病毒 (rAAV) 载体或非病毒 (微环) 载体将 PAH 表达盒递送到肝细胞。 rAAV 基因组渗透到肝细胞核中,主要保持游离状态,不与宿主基因组相互作用,但表达治疗性转基因。在基因校正中,有几种不同的基因或碱基编辑技术可用于将病理变异位点校正回野生型序列。其中一些编辑方法存在校正频率低的问题;所有方法都必须针对每种特定的病理变异重新设计。基因插入通过将整个 PAH 表达盒永久插入肝细胞基因组中的某个位置,产生基因添加和基因校正的组合(有关更多详细信息,请参阅文本)。
概率的父母之间没有血缘关系。确认了II型中枢神经系统的诊断,通常会提取和测序他的父母的血液基因组DNA及其父母的血液基因组DNA。遗传测试结果显示两个可疑的纯合致病突变。一个突变是C.1456 T> G P.Y486D纯合突变。Y486D位于外显子5上,将1,456胸腺素(T)改为鸟嘌呤(G),并将残留物486酪氨酸(Tyr)变成天冬氨酸(ASP)。他的父母是C.1456 T> G P.Y486D杂合载体(补充数字S1A – C)。另一个突变是c.211g> a p.g71r纯合突变。g71r位于外显子1中,将211鸟嘌呤(g)突变为腺嘌呤(a),并将残基71从甘氨酸(Gly)变化为精氨酸(ARG)。他的父亲是C.211G> p.g71r纯合子载体,没有任何症状,他的母亲是杂合携带者(补充数据S1D – F)。
(参考1 - 4);因此,在少数多苯基丙酰胺血症(HPA)的病例中,HPA是由DNAJC12中BH4代谢或致病变异的缺陷引起的。HPA是PKU的核心生化异常(图1),其中超过正常的血液PHE浓度(35-120μmol/L))。在未经治疗的PKU患者中,血液phe的浓度显着增加,导致在尿液中排泄的苯酮体的形成。相反,Tyr浓度通常有些低。在临床上,未经治疗的患者会出现严重的肠道残疾,癫痫和行为,精神病和运动问题,以及皮肤,眼睛和头发的色素沉着,湿疹和发霉的气味5。不太严重的PAH缺乏形式被称为中度PKU,轻度PKU,轻度HPA或良性HPA,而严重的形式称为经典PKU。从历史上看,PAH缺乏的不同严重性
代谢型谷氨酸受体2(MGLU 2)吸引了特别的关注,这是对新型抗精神病药的可能目标。然而,转导MGLU 2在大脑中的作用的信号通路仍然很差。在这里,我们通过识别鼠标前额叶皮层中的本机MGLU 2 Interactome来解决此问题。基于纳米的亲和力纯化和质谱法确定了149个候选MGLU 2个伴侣,包括神经营养蛋白受体TRKB。在培养的细胞和前额叶皮层中证实了后来的相互作用。MGLU 2激活触发TRKB在原发性皮质神经元和前额叶皮层中Tyr 816上的磷酸化。相互,TRKB刺激增强了MGLU 2稳定的G I/O蛋白激活。此外,TRKB抑制可防止戊二酰化抗精神病药在经苯基二酮治疗的小鼠中挽救行为缺陷。共同揭示了TRKB和MGLU 2之间的串扰,这是对谷氨酸能抗精神病药的行为反应的关键。
肽和蛋白质分别是氨基酸的短链和长链。表达的肽和蛋白质在生物学变异中起着重要而突出的作用,包括控制代谢,调节骨骼代谢,清除自由基,改变睾丸激素水平以及对某些疾病的治疗[1-6]。令人惊讶的是,只有二十个基因编码的氨基酸是自然界中发现的肽的基础,可以将其分为两个主要类别的亲水性和疏水性氨基酸。如方案1所示,ALA,Val,Leu,Ile,Met,Phe,Phe,Tyr和TRP的非极性烃链使它们成为亲脂性,疏水性氨基酸。虽然官能团的存在,例如羟基,酰胺,吡唑,鸟苷,胺,羧酸和硫醇,导致SER,THR,THR,THR,ASN,ASN,GLU,HIS,HIS,LYS,LYS,LYS,LYS,LYS,ASP,ASP,GLU,GLU,GLU,GLU,GLU,GLY,GLY,GLY和CYS的亲水性能(方案2)。这些氨基酸的排列共同导致具有不同亲水性,疏水性或两亲性特性的肽折叠[7]。
摘要。背景/目的:标准成像方式的主要限制之一是微观肿瘤扩散,这在肿瘤早期通常很难通过磁共振成像 (MRI) 和计算机断层扫描 (CT) 检测到。(68)Ga-DOTA(0)-Phe(1)-Tyr(3)-奥曲肽正电子发射断层扫描/计算机断层扫描 (68 Ga-DOTATOC PET/CT) 已显示出检测先前无法通过神经成像方式(例如 MRI 或 CT)诊断的病变的功效,并且能够检测多个良性肿瘤(例如 MRI 上显示单个病变的患者中的多个脑膜瘤)或其他继发性转移位置。患者和方法:我们回顾性审查了 Cannizzaro 医院关于脑和身体 68 Ga-DOTATOC PET/CT“偶发瘤”的数据,这些“偶发瘤”定义为 CT 或 MRI 扫描未发现但在 68 Ga-DOTATOC PET/CT 扫描中检测到的肿瘤。根据“偶发瘤”的位置,将其分为“脑”和“身体”两组。比较了两组之间的标准化摄取值 (SUV)。结果:共有 61 名患者在 68 Ga-DOTATOC PET/CT 上记录了“偶发瘤”
I.序言中的新空间技术和轨道上的商业机会导致了一个成倍增长且快速变化的全球空间行业。火箭发射并重新进入卫星和上层阶段,将气体和气溶胶散发到从地球表面到低地轨道的大气中的每一层。这些排放可能影响气候,臭氧水平,中层云彩,地面天文学和热层/电离层组成。空间行业的增长率令人印象深刻:发射和重新进入质量通量最近大约每三年增加一倍(Lawrence等,2022)。太空活动将继续增加到2040年的数量级(Ambrosio and Linares,2024年)。空间行业正在由大型低地轨道(LEO)卫星星座进行转换,因此到2040年计划的系统将需要每年推出10,000多颗卫星,并将其处置到大气中。由液态天然气(LNG)燃料发动机提供动力的重型升力火箭将在2040年到2040年(Dominguez等,2024)主导。空间行业排放到大气的范围和特征正在从根本上增长和变化(Shutler等,2022)。估计发射和再入气溶胶排放量表明,许多计划的大型LEO星座将需要从当前的3,500 Tyr -1增加到30,000 Tyr -1到2040年的发射吨位(Shutler等人,2022年)。火箭燃烧的排放将随着有效载荷而增加。努力。从汽化的空间碎片和用过的火箭阶段回归的排放量将从目前的每年1,000吨增加到每年30,000吨以上(Shulz and Glassmeier 2021)。到2040年,进入平流层的发射和再入颗粒物(黑碳和金属氧化物)排放的总全局通量将与自然的气象背景通量相媲美。这些估计值不包括新轨道中新空间系统的不确定但可能有重要的发射要求,例如Meo(中等地球轨道)和地理赤道轨道(地球赤道轨道),也可能是月球或火星探索的积极进程。面对太空飞行排放的构成和化学差距,发射和重新进入的排放率正在发生。对大型LNG火箭的排放和影响知之甚少。最近发现,构成天然平流层硫酸盐层的10%的颗粒中已经存在了重新进入空间碎屑的金属,这强调了迫切需要了解重新进入的即将到来的数量级如何影响大气(Murphy等人,2023年)。显而易见的是,总体上缺乏评估未来太空排放影响所需的科学和工程模型,工具和数据。小组确定了对现象的基本科学理解的关键差距,包括建模技术和知识差距:应对这些日益严重的关注,在2021年,Surendra P. Sharma博士,NASA AMES研究中心,组织和领导多机构工作组(Martin Ross博士,航空航天公司Martin Ross博士; Karen Rosenlof博士; Karen Rosenlof博士,NOAA/CSL,NOAA/CSL(NOAA/CSL)科罗拉多州哥伦比亚大学的Kostas Tsigaridis;
RAS 蛋白是小分子鸟嘌呤核苷酸结合蛋白,可在非活性 GDP 结合状态和活性 GTP 结合状态之间循环。RAS 位于质膜内层,在生长因子的细胞外刺激下,通过受体酪氨酸激酶 (RTK)(如表皮生长因子受体 (EGFR))的上游信号传导将其激活(图 1a)。生长因子激活 RTK 会诱导其 C 末端酪氨酸 (Tyr) 残基的自身磷酸化。这些磷酸酪氨酸残基可作为两种含 SH2 的衔接蛋白 SHC 和 GRB2 的结合位点,而 SHC 和 GRB2 又会将鸟嘌呤核苷酸交换因子 SOS 募集到膜上。SOS 与 RAS 共定位会导致 RAS 上的 GDP 与 GTP 交换,并激活下游信号传导(Aronheim 等人,1994 年)。然后,通过 RAS 的信号传导被 GTPase 活化蛋白 (GAP) 的活性终止,GAP 刺激 GTP 水解为 GDP,并释放磷酸盐 (Trahey & McCormick 1987, Xu et al. 1990)。在活性状态下,RAS 通过多种下游通路发出信号,包括 RAF/MEK/ERK 和 PI3K/AKT 等,以调节转录、翻译、增殖和存活(详见 Downward 2003)。
人类遗传疾病通常是由复合杂合性突变引起的,其中突变基因的每个等位基因都具有不同的遗传病变。但是,由于缺乏适当的模型,对此类突变的研究受到阻碍。在这里,我们描述了在强制性酶二聚体中的复合异伴变体的动力学模型,该变体在一个单体中包含一个突变,而第二个单体中的另一个突变中包含一个突变。该酶由人YarS2编码用于Mito-trosyl-tRNA合成酶(MT-Tyrrs),该酶是氨基化酪氨酸到MT-TRNA Tyr的氨基酰基。yarS2是MT-氨基酰基-TRNA合成酶的基因的成员,其中致病性突变的疾病严重程度与酶活性之间的相关性有限。我们在YARS2中识别一对与新生儿死亡有关的化合物杂合变体。我们表明,虽然每个突变在MT-TYRR的同型二聚体中导致氨基酰化的最小缺陷,但反式跨性别的两个突变会协同降低酶活性,从而更大。因此,这种动力学模型准确地概括了疾病的严重程度,强调了其研究YARS2突变的效用及其对具有复合杂合突变的其他疾病的泛化潜力。
乙酸阿比特酮是用于cast割前列腺癌的第一线治疗。该前药在体内被脱乙酰化至阿比特龙,这是Cy- Toochrome P450 17A1(CYP17A1)的有效和特定的抑制剂。cyp17a1执行了两个顺序步骤,这些步骤是驱动前列腺癌增殖的and-drogens的生物合成所需的,这类似于乳腺癌中的雌激素。可以进一步在类固醇A环上向多种代谢产物进行体内转移,并抑制CYP17A1。尽管其设计为主动站点 - 定向底物类似物,但阿比罗酮及其代谢产物表现出混合竞争性/非竞争性抑制作用。为了理解它们的结合,我们用三个主要的阿比罗酮代谢物解决了CYP17A1的X射线结构。尽管类固醇A环和取代基的构型不同,但在CYP17A1活性位点上,所有三个结合了类固醇芯与I螺旋的堆积物,并且A环C3酮或羟基氧形成与Abiraterone本身相似的N202的氢键。用3-酮,5α-阿比罗酮的CYP17A1结构求解至2.0Å,这是CYP17A1复合物迄今为止最高的分辨率。该结构在f/g环附近具有额外的电子密度,这可能是抑制剂的第二个分子,并且可以解释非竞争性内在。相邻ASN52的突变使其在该空间中定位其侧链,维持酶活性并预先定量外围配体的结合。总的来说,我们的发现提供了对阿比罗酮代谢产物结合和CYP17A1功能的进一步见解。
