●I2C / SPI硬件外围设备的数量→4 /6●GPIOS / UART / USART的数量→最多168/4 / 4 /4●免费工具链→STM32Cubeide●可用性●评估委员会→评估委员会→nucleo-H745ZI-Q(COSS 23 CHF) STM32F103C8T6(例如“蓝色药丸”板)●未来升级的性能范围→480 MHz皮层M7+240 MHz Cortex-M4●大SRAM/FLASH记忆→1024 KIB/2048 KIB●制造商的预期可靠性→制造商的预期可靠性→MCUS是MCUS的领导者。
串行通信接口(SCI) 串行通信接口(SCI)×6通道具有异步和同步串行接口: ● 异步接口(UART和异步通信接口适配器(ACIA)) ● 8位时钟同步接口 ● 简单IIC(仅主控) ● 简单SPI ● 智能卡接口 ● 曼彻斯特接口 ● 扩展串行接口 智能卡接口符合ISO/IEC 7816-3电子信号和传输协议标准。SCIn(n = 0、3、4、9)具有FIFO缓冲器,可实现连续和全双工通信,并且可以使用片上波特率发生器独立配置数据传输速度。
通过 MILBUS-1553 与平台通信接口 通过 10 个内部开发的 ASIC(CRISA SECOiAs)控制和监控 >200 个锁存电流限制器作为分配模块 通过串行链路(UART)控制和监控 >40 个 DCDC 转换器 内部模拟遥测 OV 和 UV 保护 高速数据监控(HRDM)可捕获配置的最多 8 个 TM 通道数据速率直至完成 2Mbits 数据(125 Ksamples) 每个 DHS 板的 RTAX2000S @ 40 MHz LCL 板:
Industrial subsystem: • 2× Gigabit Industrial Communication Subsystems (PRU_ICSSG) – Optional support for Profinet IRT, Profinet RT, EtherNet/IP, EtherCAT, Time-Sensitive Networking (TSN), and other Networking Protocols – Backwards compatibility with 10/100Mb PRU- ICSS – Each PRU_ICSSG contains: • 3× PRU RISC Cores per Slice (2× Slice per PRU_ICSSG) – PRU General Use core (PRU) – PRU Real-Time Unit core (PRU-RTU) – PRU Transmit core (PRU-TX) • Each PRU core supports the following features: – Instruction RAM with ECC – Broadside RAM – Multiplier with optional accumulator (MAC) – CRC16/32 hardware accelerator – Byte swap for Big/Little Endian conversion – SUM32 hardware accelerator for UDP checksum – Task Manager for preemption support • Up to 2× Ethernet ports – RGMII (10/100/1000) – MII (10/100) • Three Data RAMs with ECC • 8 banks of 30 × 32-bit register scratchpad memory • Interrupt controller and task manager • 2× 64-bit Industrial Ethernet Peripherals (IEPs) for time stamping and其他时间同步函数•18×Sigma-Delta滤波器模块(SDFM)接口 - 短路逻辑 - 过度电流逻辑•6×多协议位置编码器界面•1×增强捕获模块(ECAP)•16550-Compatible UART - 专用UART - 专用的192mhz时钟,支持122mbps Prifib pricibus
图 5 左侧显示了 HR1211 的电流模式部分,右侧显示了通用电源适配器中的组合芯片。该部件实现了具有多次可编程 (MTP) 存储器和非易失性存储器 (NVM) 的数字核心。HR1211 提供标准通用异步接收器发送器 (UART),允许与专用图形用户界面 (GUI) 进行通信。使用此功能,电源设计人员可以选择控制 PFC 和 LLC 级所需的参数。HR1211 中的 PFC 控制器采用获得专利的数字平均电流控制方案来实现混合 CCM/DCM 操作。
图 1 显示了垂直接口配置,其中两个 BQ79616 电池监视器引脚驱动南北方向的双绞线电缆。链的底部是控制器模块,其中 BQ79600-Q1 桥接集成电路用于高压隔离,并将电池数据从垂直接口转换为通用异步接收器发送器 (UART) 或串行外设接口 (SPI) 和主机处理器。链中每个设备的电流或电容耦合隔离都是可能的。可选地,环形配置可以在链发生故障或中断时用作冗余通信路径。
Ai-WB2-12F-Kit 是专为 Ai-WB2-12F 模块设计的开发板。Ai-WB2-12F 是深圳市爱信可科技有限公司开发的 Wi-Fi & Bluetooth 模块。该模块搭载 BL602 芯片作为核心处理器,支持 Wi-Fi 802.11b/g/n 协议和 BLE 5.0 协议。BL602 芯片内置低功耗 32 位 RISC CPU、276KB RAM 和丰富的外设接口,包括 SDIO、SPI、UART、VDC、IR remote、PWM、ADC、DAC、PIR 和 GPIO。可广泛应用于物联网 (IoT)、移动设备、可穿戴电子设备、智能家居等领域。
Ti的可扩展MSPM0 MCU投资组合具有ARM®Cortex®-M0+核心。最大CPU速度为32 MHz的低成本家族具有32位结构,可提高MCU的处理能力。从1.62 V到3.6 V的宽操作电压允许在低压和低功率应用中使用。高压检测需要 5-V耐受I/O销。 在较长的电池寿命中,MSPM0具有多种低功率模式,可在TWS应用中节省电池能量。 待机模式的消耗小于1 µA。 16针MCU的最小包装是一个3毫米×3毫米QFN,具有4KB至64KB闪存,并具有销钉对针替换选项。 集成了一个12位的快速SAR ADC,最高为4-MSPS样本率。 14位分辨率通过高精度的高度采样技术支持,以量表算法的高精度。 可以使用UART,I2C和SPI等各种外围通信界面。5-V耐受I/O销。在较长的电池寿命中,MSPM0具有多种低功率模式,可在TWS应用中节省电池能量。待机模式的消耗小于1 µA。16针MCU的最小包装是一个3毫米×3毫米QFN,具有4KB至64KB闪存,并具有销钉对针替换选项。集成了一个12位的快速SAR ADC,最高为4-MSPS样本率。14位分辨率通过高精度的高度采样技术支持,以量表算法的高精度。可以使用UART,I2C和SPI等各种外围通信界面。
- Identify and characterize the major hardware subsystems of a robotic spacecraft mission - Understand the basic physical principles of the most common spaceborne remote sensing instruments - Understand and implement general spacecraft telemetry, command and data handling concepts on representative satellite hardware systems - Know how to test and evaluate the performance of a representative spacecraft subsystem component (power, attitude control, positioning, etc.)- 了解基本航天器通信的基本原理和物流 - 安全地与电气硬件和测试设备一起使用 - 通过低级软件协议(UART,I2C,SPI)与硬件组件进行互动 - 有效地以口头和书面形式在团队环境
Figure 1: DA14695 SmartBond module DB...............................................................................4 Figure 2: DA14695 SmartBond module DEVKIT........................................................................5 Figure 3: Component description – top side ..............................................................................6 Figure 4: Component description – bottom侧面............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... button on DA14695 SmartBond module DB........................................................9 Figure 9: General purpose LED on DA14695 SmartBond module DB ......................................... 10 Figure 10: CIB (JTAG/UART interface) connector (J4) ............................................................. 10 Figure 11: Schematic of DA14695 SmartBond module DB [331-39-B], Page 1 ............................. 11 Figure 12: Schematic of DA14695 SmartBond module DB [331-39-B], Page 2 ............................. 12 Figure 13: Components on top/bottom side for DA14695 SmartBond module DB [331-39-B].......... 13