美国陆军将短程防空 (SHORAD) 定义为专用防空炮兵 (ADA) 和非专用防空能力,通过摧毁、压制或威慑低空空中威胁,实现机动和机动,以保卫关键的固定和半固定资产和机动部队。SHORAD 部队历史上嵌入陆军师,为他们提供建制能力,以保护其关键资产免受固定翼和旋翼飞机的攻击。然而,在 21 世纪初,这些 ADA 部队被从陆军剥离,以满足当时被认为更为关键的部队需求。决策者接受了威胁飞机可能对地面部队和其他关键资产构成越来越大的风险,因为他们相信美国空军可以保持空中优势。然而自 2005 年以来,针对美国地面部队的空中和导弹平台显著增加。国家和非国家行为体对无人机系统的使用呈指数级增长,在俄乌冲突中双方都成功使用了无人机系统。固定翼飞机、攻击直升机和巡航导弹也继续对美国地面部队构成重大威胁,火箭、火炮和迫击炮 (RAM) 也是如此。
自 2005 年以来,可能威胁美国地面部队的空中和导弹平台急剧增加。无人机系统 (UAS) 的使用呈指数级增长,UAS 已成功用于各种冲突,包括当前的乌克兰冲突。鉴于威胁的增加和陆军各师可用的防空资产有限,陆军决定改善其机动部队的防空态势。M-SHORAD 要求为应对日益增长的空中威胁,陆军最初计划向 4 个营部署 144 套 M-SHORAD 增量 1 系统,并可能在未来部署更多营。每个 M-SHORAD 营将包含 40 套 M-SHORAD 系统、支援车辆和设备以及大约 550 名士兵。 2021 年 4 月,第 4 防空炮兵团第 5 营接收了首批 4 套 M-SHORAD 系统,并于 2022 年底全面装备完毕。除了指定用于作战单位的 144 套系统外,陆军还计划采购 18 套系统用于训练、作战备件和测试,总计 162 套系统。据报道,截至 2024 年 6 月,陆军计划建造大约 312 套 M-SHORAD 系统,但“根据陆军未来的决定”,这一数字可能会增加到 361 套,但目前,陆军仅批准建造 162 套系统。M-SHORAD 变体/增量最初,陆军计划建造三种 M-SHORAD 变体或“增量”。
摘要 20 世纪末,美国国家航空航天局 (NASA) 参与了无人机系统 (UAS) 的研究和开发,以支持独特的科学任务。为了完成这些计划中的任务,NASA 开发了专门定制的飞行测试程序和技术。在过去十年中,通过执行大量 UAS 飞行测试任务,NASA 学到了很多关于如何规划和进行 UAS 地面和空中测试的知识,操作各种 UAS,从大型(第 5 组):NASA RQ-4“全球鹰”(诺斯罗普·格鲁曼公司)(美国弗吉尼亚州福尔斯彻奇)高空长航时无人机和 NASA MQ-9“Ikhana”(通用原子航空系统公司(GA-ASI)(美国加利福尼亚州波威)无人科学研究飞机系统)到中小型(第 3 组和第 2 组):NASA X-56 多用途技术试验台(洛克希德·马丁臭鼬工厂)(美国马里兰州贝塞斯达);NASC RQ-23 TigerShark-XP™(Navmar 应用科学公司(NASC)(美国宾夕法尼亚州沃明斯特)无人机车辆等。对于将UAS纳入美国国家空域系统(NAS)的研究案例,NASA开发了包含有人机和无人机的脚本和非脚本遭遇,以及模拟(虚拟)交通遭遇,甚至通过模拟研究了将自主性融入UAS的发现和规避要求。本文将详细探讨
可靠通信的可用性对于当前 UAS 的成功至关重要。这种依赖性在未来系统中不太可能减少,因为未来系统中车辆间协作的增加实际上可能会增加对通信的依赖。描述通信可用性对模拟 UAS 性能的影响,可以深入了解 UAS 对实际实施中可能遇到的通信故障模式的响应。此外,定义允许 UAS 以可接受性能运行的最低可容忍通信可用性水平代表了设计通信系统工程规范的基础,以及定义此类系统可以有效运行的条件。
可靠通信的可用性对于当前 UAS 的成功至关重要。这种依赖性在未来系统中不太可能减少,因为未来车辆间协作的增加实际上可能会增加对通信的依赖。描述通信可用性对模拟 UAS 性能的影响,可以深入了解 UAS 对实际实施中可能遇到的通信故障模式的响应。此外,定义允许 UAS 以可接受性能运行的最低可容忍通信可用性水平代表了设计通信系统工程规范的基础,以及定义此类系统可有效运行的条件。
无人机系统 (UAS),通常称为无人机,已迅速普及,可供民族国家、非国家行为者和个人使用。这些系统可以为美国的对手提供一种低成本的手段,对美国军队进行情报、监视和侦察任务,或攻击美国军队。。此外,许多较小的 UAS 由于其尺寸、建筑材料和飞行高度而无法被传统防空系统探测到。因此,在 2023 财年,国防部 (DOD) 计划至少花费 6.68 亿美元用于反无人机 (C-UAS) 研发,至少花费 7800 万美元用于 C-UAS 采购。随着国防部继续开发、采购和部署这些系统,国会对其使用的监督可能会增加,国会可能必须就未来的授权、拨款和其他立法行动做出决定。
无人机系统 (UAS),通常称为无人机,已迅速普及,可供民族国家、非国家行为者和个人使用。这些系统可以为美国的对手提供一种低成本的手段,对美国军队进行情报、监视和侦察任务,甚至攻击美国军队。此外,许多较小的 UAS 由于其尺寸、建筑材料和飞行高度而无法被传统防空系统探测到。因此,在 2023 财年,国防部 (DOD) 计划在反无人机 (C-UAS) 研发上至少花费 6.68 亿美元,在 C-UAS 采购上至少花费 7800 万美元。随着国防部继续开发、采购和部署这些系统,国会对其使用的监督可能会增加,国会可能不得不就未来的授权、拨款和其他立法行动做出决定。
随着无人机系统 (UAS) 不断融入美国国家空域系统 (NAS),需要量化无人机和载人飞机之间空中碰撞的风险,以支持法规和标准的制定。监管机构和标准制定组织都广泛使用了使用飞机飞行概率模型的蒙特卡罗碰撞风险分析模拟。我们之前已经展示了一种开发小型无人机系统 (sUAS) 飞行模型的方法,该方法利用开源地理空间信息和地图数据集来生成具有代表性的低空无人操作。这项工作在之前的研究基础上进行了扩展,评估了开源数据的可扩展性和多样性,以支持当前所需的风险评估。我们还考虑将这些轨迹与生成式载人飞机模型配对,以创建用于蒙特卡罗模拟的相遇。
摘要:无人驾驶飞行器 (UAV)(也称为无人机)的进步为推动各种大规模物联网 (IoT) 应用提供了前所未有的机会。然而,无人机平台仍然面临主要与自主性和重量相关的重要限制,这些限制会影响其在捕获和处理开发自主和强大的实时障碍物检测和避障系统所需的数据时的遥感能力。在这方面,深度学习 (DL) 技术已成为一种有前途的替代方案,可改善高度自主的无人机的实时障碍物检测和防撞能力。本文回顾了 DL 无人机系统 (UAS) 的最新发展,并详细解释了主要的 DL 技术。此外,研究了最新的 DL-UAV 通信架构并分析了它们最常见的硬件。此外,本文列举了当前 DL-UAV 解决方案最相关的开放挑战,从而使未来的研究人员能够定义设计新一代经济实惠的自主 DL-UAV IoT 解决方案的路线图。
(U) A. 任务描述 Cryptologic 项目由空军电子密钥管理系统 (AFEKMS) 组成。AFEKMS 与 NSA 的 EKMS 协同工作,为空军 C4I 和武器系统的密钥材料、语音呼号和通信安全 (COMSEC) 出版物的电子生成、分发、核算和管理提供安全灵活的功能。AFEKMS 取代了现有的物理分发和管理系统,为美国空军信息保障提供加密密钥材料。信息保障强调访问控制、多级安全数据库、可信计算和信息完整性。AFEKMS 是一种分层排列的三层系统结构。这种分层结构提供了从“批发”到“零售”再到“消费者”分发、管理和核算 COMSEC 密钥材料的能力。第 1 层安装包括“批发”功能。第 2 层安装包括分销网络,第 3 层包括“零售地点”,密钥材料从 AFEKMS 离开并进入最终项目 COMSEC 设备 (EICE)。采购包括商用现货 (COTS) 计算机和软件、承包商开发的应用软件、政府提供的设备 (GFE) 和 NSA 的本地 COMSEC 管理软件 (LCMS) 等软件。美国空军开发的用户应用软件 (UAS) 是提供特定功能所必需的,用于独特的密钥管理系统,例如 F-22、高级 EHF COMSEC/TRANSEC 系统 (ACTS)、联合攻击战斗机,以及用于空军应用的 ECU 的独特密钥填充要求,例如 ARC-210、战斗机数据链、机载集成终端组和多波段多模式无线电。UAS 导入 LCMS 用户界面,将多个独立的 UAS 集成到一个共同支持的包中,并在无法集成时调节独特的 UAS。还将独特的用户应用软件与 NSA 提供的软件更改隔离开来,并允许手动操作员流程自动化,以节省人力、减少所需培训并提高任务效率。总体而言,AFEKMS 将通过大大增强传统密钥管理系统的机密性、完整性和不可否认性来改善对国家安全相关信息的保护。AFEKMS 将大大加快通过电子传输而不是材料运输获得密钥的速度,并将提高任务响应能力和灵活性。虽然包括升级功能以在可能的情况下使用重新托管操作、COTS 和面向用户的软件在技术上刷新系统,但最终目标是提供一条迁移路径,以迁移到 NSA 密钥管理基础设施 (KMI) 计划下计划的类似功能。此类 KMI 功能预计将于 2015 年左右出现。