可以根据特定要求定制针对GPS污染的隧道建设环境的无人机硬件平台设计。在[7]中,一种称为弹性微型传单的新型耐碰撞机器人旨在在密闭环境中进行导航。机器人保持低重量(<500g)和小框架(直径为0.32m),并通过在其坚硬的耐碰撞耐耐碰撞框架周围集成弹性襟翼来实现组合的刚性结合设计。在[8]中,为了提供快速的勘探能力,尤其是在地面机器人无法进入的区域中,使用了一支空中侦察员。这个空中机器人团队对建筑隧道环境的探索非常有用,同时考虑了一些极端的工作障碍。这些侦察员主要有三类,即中型多轨道,小型碰撞
在各种平民和军事应用中,例如监视,检查,搜索和救援,机器人系统变得重要并变得越来越有用。尤其是,始终期望良好发达的自主系统使人免受危险和未知环境中的操作风险。但是,对于自主系统操作,具有此类特征的环境通常更具挑战性。例如,在受GPS有限的环境中,需要机器人来估计其状态并仅在传感器测量上做出决定,而无需访问精确的位置信息[1]。在工业场景中具有复杂的结构化环境,具有移动的人类和机器人,如图1,需要自主无人机才能在混乱的环境中导致其目标,并确保与人类的安全。因此,一个稳定的无人机硬件平台和安全的轨迹计划软件框架对于处理复杂的环境结构,动态障碍以及来自测量噪声和无法预测的移动障碍行为至关重要[2]。
多旋翼无人机(UAV)已转变为能够通过未知环境导航的智能代理。这种演变强调了它们自主操作并适应多样化和挑战的场景的能力。无与伦比的研究经常面临一个重大问题:缺乏真实和多样化的培训数据。为了解决这个问题,我们介绍了U2USIM,这是一个远程仿真平台,旨在在UAV-TO-TO-UAV(U2U)合作学习和体现AI研究中进行现实的合成数据生成,性能评估和可视化。模拟提供了一种有效的解决方案,可以实现实时可容纳能力,高可操作性,高分辨率图像和成本效益[8]。以前的仿真平台,例如Airsimw [2],Xtdrone [7],Smrtswarm [1],在镜像现实世界环境中受到限制。受Ros-Gazebo-Px4工具链的启发,以视觉大满贯和导航而闻名,我们提出了U2USIM平台。此工具利用UE [5],Airsim [6]和ROS [4]来结构具有动态和现实的虚拟环境的实时交互式平台。
摘要:本文概述了利用F450框架的功能性无人机(UAV)的构建,该框架是在科学研究项目的背景下由一名学生进行的。学生专注于选择和集成电子组件,例如电动机,传感器和通信模块,并配置飞行控制单元(FCU)。使用循环(SITL)技术中的软件来验证无人机功能并展示其准确响应飞行命令的能力。本文最后着重于教育影响,突出了将无人机技术整合到课程中的变革潜力,并为学生做好了电子工程中不断发展的挑战的准备。
1 埃尔吉耶斯大学,工程学院,机电一体化工程系,38039,开塞利,土耳其 收稿日期:2024 年 3 月 27 日 修订日期:2024 年 6 月 11 日 接受日期:2024 年 7 月 8 日 摘要 Öz 本文介绍了 Pure Pursuit 控制算法在农业农药喷洒无人机路径跟踪中的实现。精确的路径跟踪可确保准确的农药覆盖范围,最大限度地提高作物产量并最大限度地减少环境影响。大多数农业无人机使用的传统位置控制架构会导致农药分布不一致,因为无人机速度不稳定。位置控制还会导致角落处的减速和加速,导致这些区域喷洒过度。这种缺乏均匀的喷雾分布对高效和可持续农业提出了挑战。Pure Pursuit 算法因其在自主导航中的简单性和有效性而受到青睐。软件架构(包括飞行控制堆栈和基于 ROS2 的 PX4 仿真架构)展示了无人机的精确轨迹跟踪能力。仿真测试评估了系统的路径跟踪精度和整体性能。比较结果表明,Pure Pursuit 控制器在精度、鲁棒性和适应性方面优于标准位置控制器。此外,本文介绍了一种基于网格分解的创新覆盖路径规划 (CPP) 策略。该 CPP 策略与 Pure Pursuit 控制机制相结合,可确保精确的路径跟踪并最大限度地提高覆盖均匀性,从而进一步提高农业喷洒作业的有效性和可持续性。
摘要:本文介绍了对无人机情境意识(SA)(SA)的全面调查,描述了其应用,局限性和基本算法挑战。它突出了高级算法和战略见解的关键作用,包括传感器集成,强大的协调框架和复杂的数据处理方法。纸张批判性地构成了多方面的挑战,例如实时数据处理需求,动态环境中的适应性以及高级AI和机器学习技术引入的复杂性。关键贡献包括对诸如精密农业,灾难管理和城市基础设施监测等行业中无人机中心的变革潜力的详细探索,这是案例研究的支持。此外,该论文研究了路径规划和控制的算法方法,以及多代理合作社SA的策略,解决了各自的chal菌和未来的方向。此外,本文讨论了即将到来的技术进步 - 旨在克服当前局限性的能源有效的AI解决方案。这项整体审查提供了对UAV中心的SA的宝贵见解,为将来的重新搜索和该领域的实际应用建立了基础。
GSMA是一个全球组织,统一移动生态系统,以发现,开发和交付积极的商业环境和社会变革的创新基础。我们的愿景是释放连通性的全部力量,以使人,工业和社会蓬勃发展。代表移动生态系统和相邻行业的移动运营商和组织,GSMA为其成员提供了三个广泛的支柱:良好的连接,行业服务和解决方案以及外展。这项活动包括推进政策,应对当今最大的社会挑战,基于使移动运作的技术和互操作性的基础,并提供了世界上最大的平台,以在MWC和M360系列活动中召集移动生态系统。
无人驾驶汽车(UAV)的抽象高可利用性着陆系统已广泛关注它们在复杂的野生环境中的适用性。准确的定位,灵活的跟踪和可靠的恢复是无人机着陆的主要挑战。在本文中,提出并实施了一个新型的无人机自动着陆系统及其控制框架。它由环境感知系统,无人接地车辆(UGV)以及斯图尔特平台定位,跟踪和自动恢复无人机。首先,开发基于多传感器融合的识别算法是为了借助一维转盘实时定位目标。其次,提出了由UGV和着陆平台组成的双阶段跟踪策略,以动态跟踪着陆无人机。在广泛的范围内,UGV负责通过人工电位场(APF)路径计划和模型预测控制(MPC)跟踪算法进行快速跟踪。虽然在平台控制器中采用了梯形速度计划来补偿UGV的跟踪误差,但在较小范围内实现了对无人机的精确跟踪。此外,一种恢复算法,包括姿态补偿控制器和阻抗控制器,是为Stewart平台设计的,可确保无人机的水平和合规降落。最后,广泛的模拟和实验致力于验证开发系统和框架的可行性和可靠性,这表明它是在野生环境(例如草原,斜坡和雪)中无人用自动降落的卓越案例。
本研究介绍了一种自主机器人对接和电池更换系统,适用于使用定制浮空器在 500 英尺或更高高度运行的无人机 (UAV)。该系统旨在通过提供经济高效的解决方案来解决无人机电池寿命有限的关键问题,从而减少与手动更换电池相关的停机时间。我们的方法包括一种基于滑轮带的并行对接机构,该机构由碳纤维棒、铝挤压件和用于电池更换的垂直线性执行器制成。对接系统确保无人机在电池更换过程中牢固固定,这通过定制的 3D 打印电池外壳和带有导电铜板的线性传送带系统来实现。此外,对接系统利用称重传感器来确认无人机的着陆,确保准确可靠的电池更换。我们选择了浮空器上的空中电池更换系统,这样无人机就可以避免使用额外的控制来降低其高度降落在地面上,因为起飞和降落是飞行中最耗电的阶段。这种由轻质材料制成的集成系统不仅提高了无人机操作的自主性,而且还设想了一个未来的枢纽,多架无人机可以停靠、更换电池并在电池充电时恢复任务,从而大大扩展了它们的作战能力和效率。