随着价格实惠的系统数量不断增加以及该领域的研究力度不断加大,人机交互 (HDI) 越来越受到关注 [2、3、5、8]。然而,由于 HDI 系统使用硬件和软件平台的分布式特性,设计和制作原型仍然具有挑战性。正如 Funk [8] 所强调的,在这种情况下构建和制作交互原型需要:控制无人机、了解无人机的位置以及提供无人机与其他系统之间的通信。不幸的是,现有技术通常都是商业产品,几乎无法为开发人员提供调整系统或使其适应其需求的支持。在本文中,我们首先介绍 Paparazzi 无人机 (UAV) 系统 [1、10] 及其架构。然后,我们描述了三个用 Paparazzi 构建的新型交互系统的案例研究,这些案例研究凸显了其支持各种 HDI 系统原型设计的能力。我们的案例研究涵盖使用增强现实眼镜进行信息可视化、支持残障用户的新控制方法和面部跟踪无人机。最后,我们讨论了 Paparazzi 为支持 HDI 设计师提供的可能性以及可能的改进。
行动 1. 你会依靠无人机执行哪些行动? 2. 你会不依靠无人机执行哪些行动? 3. 相信无人机完成任务有多容易? 4. 在行动过程中,你对无人机的信任会发生怎样的变化? 5. 会有什么负面结果吗?
在过去的几十年中,无人机的运行次数有所增加。起初,无人机主要用于军事目的。如今,许多不同类型的无人机 (UAV) 执行的任务对于民用空域的载人飞机来说过于枯燥、肮脏或危险。阻碍无人机在民用领域普及的主要问题是无人机系统 (UAS) 与空中交通管理系统的集成以及 UAS 的安全性。对于载人航空,有许多不同的法规迫使制造商和运营商提高飞机的安全性和可靠性。当时,没有针对无人机系统的此类法规。不同的来源显示了当前的无人系统有多危险。一些报告显示,无人机事故发生率约为每 100,000 飞行小时 32 起,是商用班轮飞机事故发生率的 3,200 倍(国防科学委员会研究,2004 年)。这些数字表明,在无人系统的安全领域还有很多工作要做。世界各地的各种机构现在都专注于 UAS 使用的安全方面(Loh 等人,2006 年、2009 年;Uhlig 等人,2006 年;Lin 等人,2014 年)。研究人员试图说服制造商,必须从开发过程一开始就考虑安全性,并且不必大幅增加系统成本。基于 COTS 元素和子系统的设计尤其危险。众所周知,复杂系统的整体安全性取决于每个元素的安全性。但是,有办法确保单个元素或子系统的故障不会导致事故。无人机的安全性取决于几个不可预测的因素,例如飞机内部和外部的敌对行动。发生故障时,最重要的措施必须是保持飞机的可控性。无人机主要使用自动驾驶仪进行飞行。自动飞行控制系统设计用于正常运行,当出现不可预测的故障时,可能无法做出足够有效的反应。在发生不可预测的故障时确保安全的一种方法是重新配置飞行控制系统 (Kozak et al ., 2014),这将使控制系统具有容错能力并确保在发生故障时飞机的可控性。
本论文由 Maritime Commons 提供。开放获取项目可以下载用于非商业、合理使用的学术目的。未经世界海事大学书面许可,不得将任何项目托管在其他服务器或网站上。如需更多信息,请联系 library@wmu.se 。
完全集成的解决方案不仅包括硬件(无人机),而且最重要的是服务(车辆、软件和飞行操作的选择)、数据采集和处理以及处理与机器性质相关的风险所需的保险服务。举个具体的例子,无人机在精准农业中的商业应用目前引起了农学家而非农民的兴趣。这是因为附加值在于数据的获取和处理。通过“飞行服务器网络”收集的数据对农学家更有价值,因为他们能够解释这些数据并根据这些信息提供建议。然而,在完全自动化的情况下,整个系统可以执行该过程的所有阶段:数据收集、解释和决策。
摘要 — 本项目旨在开发一种小型飞艇,由人类远程控制。飞艇是无人驾驶飞艇 (UAV) 之一,可用于广告、VIP 安全检查、交通监控和管理等。本项目的主要目的是设计和开发一种用于室内监控和监测应用的自主无人机飞艇。图像将从安装在吊舱底部的无线摄像头捕获。确定物体的质心点需要使用三相边缘检测器、精明算子和阈值。该对象将以 2D 坐标显示在图形用户界面 (GUI) 上。在这个项目中,系统一次只能检测一个物体。关键词 — 精明算子、图形用户界面 (GUI)、物体检测、边缘检测器
无人机是现代战争中的重要武器装备之一,在民用领域也得到了广泛的应用。随着无人机发挥的作用越来越大,世界各国在加快研发和装备先进无人机系统的同时,为了提高无人机的应用效果,越来越重视基于实战需求的训练体系与方法的研究。目前,不同类型的无人机仿真训练系统得到了广泛的开发和应用,其首要目的就是通过仿真训练提高飞行人员的能力。为了实施真实的飞行操控训练,需要建立飞行模拟环境[1],飞行模拟的效果越接近真实的无人机飞行状态,无人机操控人员的技能将得到更大的提高。
1.1 序言................................................................................................................................................ 1
无人机具有提高操作灵活性和降低任务成本的良好能力,我们正在利用固定翼无人机实现的自动航母着陆性能改进。为了展示这种潜力,本文研究了两个关键指标,即基于 F/A-18 大攻角 (HARV) 模型的无人机飞行路径控制性能和降低进近速度。着陆控制架构由自动油门、稳定增强系统、下滑道和进近航迹控制器组成。使用蒙特卡洛模拟在一系列环境不确定性下测试控制模型的性能,包括由风切变、离散和连续阵风以及航母尾流组成的大气湍流。考虑了真实的甲板运动,其中使用了海军研究办公室 (ONR) 发布的海军环境系统表征 (SCONE) 计划下的标准甲板运动时间变化曲线。我们通过数字方式演示了允许成功着陆航母的限制进近条件以及影响其性能的因素。
本文件介绍了美国国防部 (DoD) 在未来 25 年(2002 年至 2027 年)开发和使用无人驾驶飞行器 (UAV) 和无人驾驶战斗机 (UCAV) 的路线图。国防部的作战无人机系统包括捕食者、猎人、影子和先锋,它们在最近的军事行动中表现出了强大的能力。全球鹰等开发系统和许多小型无人机系统也在最近的战斗和战斗支援行动中接受了考验。总的来说,这一技术领域为改变这个国家开展各种军事和军事支援行动的方式提供了巨大的机会。与任何新技术一样,人们自然不愿意过渡到一种全新的能力。在战斗和现实训练环境中充分展示无人机的需求对于这项技术的迁移至关重要。