技术特性:加密功能加密 NSA 类型 1 (BATON) 最高可达秘密级别数据网络兼容性通过 AP/WB 到有线网络 (802.3、TCP/IP、UDP 等)加密有效负载整个 IEEE 802.11b MAC 协议数据单元 (MPDU) 数据密钥端口加载机制手动,通过 DS-102 通用填充设备 (CFD) AN/CYZ-10 密钥填充单一密钥;对称 PC 卡分类 – 未分类密钥或无密钥控制加密项目 (CCI) – 带密钥秘密 COMSEC 项目客户/用户 COMSEC 批准的政府机构和政府合同供应商无线电特性无线介质未经许可,ISM 频段,2412–2462 MHz(美国)信道数 11(3 个不重叠)每信道链路速率 1、2、5.5 和 11 Mbps 发射功率(标称)设置 EIRP IRP 最大值 16–18 dBm 14–16 dBm(25–40 mW)最小值 10–12 dBm 8–10 dBm(6–10 mW)标准天线双 2.0 dBi 偶极子天线连接器接口标准 SMA 支持外部配件
在纯状态断层扫描中,独特的确定性(UD)的概念 - 从测量结果中确定纯状态的能力 - 至关重要。本研究提出了一种研究UD的新变分方法,为与UD测量方案的结构和认证相关的挑战提供了强有力的解决方案。我们提出了一种有效的算法,该算法可以最大程度地减少特定定义的损耗函数,从而使UD和非UD测量方案之间的分化。这导致在各种维度中发现了许多最佳的纯国保利测量方案。此外,我们辨别纯状态(UDP)中唯一确定的对齐和在利用Pauli测量时在量子系统中所有状态(UDA)中唯一确定的对齐,强调了其在纯状态恢复下的内在鲁棒性。我们进一步解释了损失功能的物理含义,并由理论框架加强。我们的研究不仅可以推动量子状态断层扫描中对UD的理解,而且还为实验应用提供了宝贵的实践见解,强调了在数学最佳和实验性实用主义之间需要平衡方法的必要性。
ADC:模数转换器 AHRS:姿态航向参考系统 CAN(总线):控制器局域网 DHCP:动态主机配置协议 DVL:多普勒速度计 EKF:扩展卡尔曼滤波器 EEPROM:电可擦可编程只读存储器 FIR:有限脉冲响应(滤波器) FTP:文件传输协议 FS:全量程 FOG:光纤陀螺仪 GNSS:全球导航卫星系统 GPS:全球定位系统 IIR:无限脉冲响应(滤波器) IMU:惯性测量单元 INS:惯性导航系统 IP:互联网协议 LBL:长基线 MAC(地址):媒体访问控制 MEMS:微机电系统 NED:东北向下(坐标框架) NA:不适用 NMEA(NMEA 0183):国家海洋电子协会(标准化通信协议) PPS:每秒脉冲(信号) RAM:随机存取存储器 RMA:返回商品授权 RMS:均方根 RTCM:海事无线电技术委员会(协议) RTK:实时运动学 SI:国际单位制 TBD:待定义 TCP:传输控制协议 UDP:用户数据报协议 UTC:协调世界时 USBL:超短基线 VRE:振动校正误差 WGS84:世界大地测量系统 1984 WMM:世界磁模型
ADC:模数转换器 AHRS:姿态航向参考系统 CAN(总线):控制器局域网 DHCP:动态主机配置协议 DVL:多普勒速度计 EKF:扩展卡尔曼滤波器 EEPROM:电可擦可编程只读存储器 FIR:有限脉冲响应(滤波器) FTP:文件传输协议 FS:全量程 FOG:光纤陀螺仪 GNSS:全球导航卫星系统 GPS:全球定位系统 IIR:无限脉冲响应(滤波器) IMU:惯性测量单元 INS:惯性导航系统 IP:互联网协议 LBL:长基线 MAC(地址):媒体访问控制 MEMS:微机电系统 NED:东北向下(坐标框架) NA:不适用 NMEA(NMEA 0183):国家海洋电子协会(标准化通信协议) PPS:每秒脉冲(信号) RAM:随机存取存储器 RMA:返回商品授权 RMS:均方根 RTCM:海事无线电技术委员会(协议) RTK:实时运动学 SI:国际单位制 TBD:待定义 TCP:传输控制协议 UDP:用户数据报协议 UTC:协调世界时 USBL:超短基线 VRE:振动校正误差 WGS84:世界大地测量系统 1984 WMM:世界磁模型
儿童大部分药物为口服给药,但各年龄段儿童小肠药物代谢酶(DME)和药物转运体(DT)的蛋白质丰度信息仍不明确,这阻碍了儿童精准用药。为了探索 DME 和 DT 的年龄相关差异,收集了儿童和成人空肠和回肠手术剩余的肠组织,并通过靶向定量蛋白质组学分析了顶端钠 - 胆汁酸转运蛋白、乳腺癌耐药蛋白(BCRP)、单羧酸转运蛋白 1(MCT1)、多药耐药蛋白 1(MDR1)、多药耐药相关蛋白(MRP)2、MRP3、有机阴离子转运多肽 2B1、有机阳离子转运蛋白 1、肽转运蛋白 1(PEPT1)、CYP2C19、CYP3A4、CYP3A5、UDP 葡萄糖醛酸转移酶(UGT)1A1、UGT1A10 和 UGT2B7。分析了 58 名儿童(48 条回肠、10 条空肠,年龄范围:8 周至 17 岁)和 16 名成人(8 条回肠、8 条空肠)的样本。比较年龄组时,成人回肠中的 BCRP、MDR1、PEPT1 和 UGT1A1 丰度明显高于儿童回肠。空肠 BCRP、MRP2、UGT1A1 和 CYP3A4 丰度在
摘要 - 5G网络的部署已大大提高了连接性,提供了显着的速度和容量。这些网络依靠软件定义的网络(SDN)来增强控制和灵活性。但是,由于网络虚拟化以及未经授权访问关键基础架构的风险,这种进步提出了关键挑战,包括扩大的攻击表面。由于传统的网络安全方法在解决现代网络攻击的动态性质时不足以使用人工智能(AI)(AI),并特别研究了深入的增强学习(DRL),以提高5G网络安全性。这种兴趣源于这些技术根据遇到的情况和实时威胁动态反应和适应其防御策略的能力。我们提出的缓解系统使用DRL框架,使智能代理可以在旨在反映现实生活中用户行为的SDN环境中在SDN环境中动态调整其防御策略,利用ICMP,TCP SYN和UDP的一系列DDOS攻击。这种方法旨在通过根据受监控的网络的情况提供自适应和拟定的对策,同时通过同时减轻实时攻击的影响,同时减轻实时攻击的影响。索引术语 - 提升学习,分布式服务,服务质量,软件定义的网络
Industrial subsystem: • 2× Gigabit Industrial Communication Subsystems (PRU_ICSSG) – Optional support for Profinet IRT, Profinet RT, EtherNet/IP, EtherCAT, Time-Sensitive Networking (TSN), and other Networking Protocols – Backwards compatibility with 10/100Mb PRU- ICSS – Each PRU_ICSSG contains: • 3× PRU RISC Cores per Slice (2× Slice per PRU_ICSSG) – PRU General Use core (PRU) – PRU Real-Time Unit core (PRU-RTU) – PRU Transmit core (PRU-TX) • Each PRU core supports the following features: – Instruction RAM with ECC – Broadside RAM – Multiplier with optional accumulator (MAC) – CRC16/32 hardware accelerator – Byte swap for Big/Little Endian conversion – SUM32 hardware accelerator for UDP checksum – Task Manager for preemption support • Up to 2× Ethernet ports – RGMII (10/100/1000) – MII (10/100) • Three Data RAMs with ECC • 8 banks of 30 × 32-bit register scratchpad memory • Interrupt controller and task manager • 2× 64-bit Industrial Ethernet Peripherals (IEPs) for time stamping and其他时间同步函数•18×Sigma-Delta滤波器模块(SDFM)接口 - 短路逻辑 - 过度电流逻辑•6×多协议位置编码器界面•1×增强捕获模块(ECAP)•16550-Compatible UART - 专用UART - 专用的192mhz时钟,支持122mbps Prifib pricibus
• Fully integrated and green/RoHS module includes all required clocks, serial peripheral interface (SPI) flash, and passives • Integrated Wi-Fi ® and internet protocols • 802.11a/b/g/n: 2.4GHz and 5GHz • FCC, IC/ISED, ETSI/CE, and MIC certified • FIPS 140-2 Level 1 validated IC inside • Rich set of IoT security features helps developers protect data • Low-power modes for battery powered application • Coexistence with 2.4GHz radios • Industrial temperature: –40°C to +85°C • Wi-Fi network processor subsystem : – Wi-Fi core: • 802.11 a/b/g/n 2.4GHz and 5GHz • Modes: – Access Point (AP) – Station (STA) – Wi-Fi Direct ® (only supported on 2.4GHz) • Security: – WEP – WPA ™ / WPA2 ™ PSK – WPA2 Enterprise – WPA3 ™ Personal – WPA3 ™ Enterprise – Internet and application protocols: • HTTPs server, mDNS, DNS-SD, DHCP • IPv4 and IPv6 TCP/IP stack • 16 BSD sockets (fully secured TLS v1.2 and SSL 3.0) – Built-in power management子系统:•可配置的低功率配置文件(始终打开,间歇性连接,标签)•高级低功率模式•集成的DC/DC调节器•应用程序吞吐量 - UDP:16MBPS:16MBPS - TCP:13MBPS•13MBPS•多层安全性,
网络设置20连接到外部云服务20配置您的防火墙规则21通过代理22连接到额外的云服务22旁路证书验证22与外部云云服务脱离连接23管理Extrahop Cloud Service 23 COUMBER SERVICAMENT 23连接23配置一个接口24设置静态路由25静态路由27 interface 26 Interface 27 Interface 27 Invorlice 27 interfut 27 interfut 27 interfut a interfut 27 interfut a interfut 27 interfut a interfut 27额外云代理27键接口28创建键接口28修改键接口设置29销毁债券接口29数据包摄取设置29流量网络30 Flow Networks 30 Flow Networks 30 Flow Networks 30 Chapl and Sflow设备30配置您的Exterfahop System上的接口30上的接口33 Cisco Nexus Switch 32配置Cisco Switch通过Cisco IOS CLI 33设置您的NetFlow或Sflow Networks共享SNMP凭据34手动刷新SNMP信息34通知35配置通知的电子邮件设置35
植食性昆虫已经进化出复杂的解毒系统来克服许多植物产生的抗食草动物化学防御。然而,这些生物转化系统在通才和专才昆虫物种中有何不同,以及它们在确定昆虫宿主植物范围方面的作用仍是一个悬而未决的问题。在这里,我们表明 UDP - 葡萄糖基转移酶 (UGT) 在确定 Spodoptera 属内昆虫物种的宿主范围方面起着关键作用。对宿主植物宽度不同的 Spodoptera 物种进行比较基因组分析,发现在通才物种中 UGT 基因数量相对保守,但在专才 Spodoptera picta 中 UGT 基因假基因化水平较高。CRISPR - Cas9 敲除 Spodoptera frugiperda 的三个主要 UGT 基因簇表明,UGT33 基因在使该物种利用禾本科植物玉米、小麦和水稻方面发挥重要作用,而 UGT40 基因促进棉花的利用。进一步的体内和体外功能分析表明,UGT SfUGT33F32 是使广谱 S. frugiperda 能够解毒苯并恶嗪类化合物 DIMBOA(2,4-二羟基-7-甲氧基-2H-1,4-苯并恶嗪-3(4H)-酮)的关键机制,DIMBOA 是由禾本科植物产生的强效杀虫毒素。然而,虽然这种解毒能力在几种广谱 Spodoptera 物种中得到了保留,但专食文殊兰植物的 Spodoptera picta 因 SpUGT33F34 的非功能性突变而无法解毒 DIMBOA。总之,这些发现为了解昆虫 UGT 在宿主植物适应中的作用、广谱和专谱之间进化转变的机制基础提供了见解,并为控制一组臭名昭著的害虫提供了分子目标。