生物燃料、合成电子燃料和氢气均被视为未来可持续航空燃料。生物燃料和合成电子燃料面临的主要挑战分别是原料供应和成本;但两者都需要对燃气涡轮发动机进行最小程度的改变。氢燃料是实现零碳航空的另一种潜在途径,其主要挑战是建立燃料供应基础设施。将氢燃料引入 UHBR 发动机需要在热系统、燃料系统和燃烧系统方面采取技术措施。
设计,开发,制造和地面测试演示了超高搭桥率(UHBR)管道齿轮涡轮增压发动机,包括先进的核心发动机和燃烧技术,高级热力学(可变)循环;与2020年最先进的机构相比,针对SMR飞机的超高效推进系统的杂交技术至少降低了20%。trl 5在项目完成时从地面测试演示中进行的导管齿轮架构系统级别。Horizon-Ju-Clean-Aviation- 2025-03-SMR-02
Alya 有三种应用。第一个用例 (C2U1) 涉及污染物等排放物的预测。使用燃烧应用中具有详细化学动力学的高级数值模拟来预测 NOx 和烟尘,目前正引领下一代公路运输和航空发动机的设计过程。第二个用例 (C2U2) 旨在研究整机空气动力学的主动流动控制,这对于开发新型超高涵道比 (UHBR) 发动机是一个非常相关的主题。第三个用例 (C2U3) 专注于运输系统机械结构的建模,重点是预测载荷和应力以及疲劳和断裂。选择这三个用例是因为它们对应于航空航天领域建模和仿真代码的基本挑战。
在先进飞机配置 (AVACON) 研究项目中,进行了一架中程飞机的协作概念设计,该飞机配备超高涵道比 (UHBR) 发动机,预计于 2028 年投入使用。本文介绍了 AVACON 中飞机机载系统的整体架构、尺寸和评估方法。为此,回顾了文献中提出的概念系统设计方法的重要贡献,以确定方法改进的方向。描述了贡献合作伙伴的角色分配及其系统设计活动的方法。拥有不同的贡献者保证,从整体飞机到详细子系统设计的任务以及系统模型保真度的不断提高都得到了覆盖。此外,还定义了一种最先进的基线架构,它将作为开展权衡研究的起点,以研究系统架构概念和创新技术的潜力。推导出先进飞机配置所隐含的大量系统设计要求和新边界条件,为计划中的技术研究提供展望。
对于未来的中短程概念,在第一和第二次评估练习中考虑了几种发动机结构(齿轮超高涵道比 - UHBR、可变螺距风扇 - VPF、对转开式转子 - CROR、开式风扇),其中后置开式风扇结构(SMR++)的性能改进最佳,CO 2 /pax/km 排放量降低 30%。剩余的挑战,例如 SMR(高压比小型核心发动机)的低 NO X 技术以及开式转子发动机配置的噪音进一步改进,再次强调了同时优化燃油效率(CO 2 )、NO X 排放和噪音的难度,从技术角度来看,这是相互冲突的要求。尽管起飞和降落时的 NO X 排放量显示与认证限值还有进一步的改善,但降低巡航时的 NO X 排放量仍然是一个研究领域,因此在当前的清洁航空计划下正在积极开展该研究。