ULP无线电使用高级数字发射器和双模式零IF IQ以及ULP模式的单支相相接收器Archi-Tecture。新颖的收发器体系结构以0.8V标称电压供应,增压电池寿命实现超低功率消耗。前端由零-IF I/Q接收器和一个D级PA组成。系统时钟由32MHz晶体振荡器提供。分数-N ADPLL由数字控制振荡器(DCO),I/Q信号产生,相位量化器和数字转换器(DTC)组成。它具有广泛的自我校准,例如DCO银行选择和2点增益校准。在FPGA上实施了完整的数字基带(DBB)和微控制器测试系统,以允许使用标准测试设备(例如蓝牙CMW/CBT测试)进行全系统评估。
摘要近年来,可持续和生态粮食生产的发展引起了全球的兴趣。很明显,随着新的整合系统的发展,这种现象正在引起以水产养殖研究的变化。但是,仍然有必要了解综合系统中涉及的不同方面,包括虾和海藻等共培养系统。这项研究评估了绿色海藻作为食物来源对白虾penaeus vannamei肠道细菌群落的影响。虾:仅用颗粒(P)喂食,仅ulva Clathrata(UC),U。Clathrata + Pellet(UCP),仅ULVA LACTUCA(UL)(UL)和U. lactuca + lactuca + pellet(ULP)。在生长和生存方面,与对照(P)相比,ULP和UCP处理之间没有发现显着差异(P> 0.05)。对虾肠的细菌生物群的分析显示,与对照(P)相比,ULP,UL和UC中社区组成的显着差异(P <0.05)。我们发现,蛋白杆菌是所有治疗中最丰富的门,其次是用于UC,UCP和UL和UL和ULP治疗的细菌菌。虾只用海藻U. lactuca(UL,ULP)的rubritalea,lysinibacillus,acinetobacter和bellopopirellula的丰富度明显更高,用于U. Clathrata治疗(UC,UCP),是litoreibacter。对照(P)中颤动的相对丰度更高,显示出UC和UL处理的减少。我们的发现可以更好地了解综合的水产养殖系统,特别是那些利用海藻作为天然饲料来源的水产养殖系统。
BLE/FSK设备与WiFi接入点(APS)之间的双向通信结合了长期效果,设备成本低和无处不在的互联网访问的好处。但是,先前的跨技术通信(CTC)So so-untions需要FSK芯片中的变速箱混合器,因此不适用于新的超低功率(ULP)BLE芯片,这可以去除这些搅拌机以节省动力。此外,先前的CTC解决方案的吞吐量限制为1Mbps。我们提出了从根本上克服这些限制的drew。它旨在仅通过控制功率放大器(PA)来有效传输WiFi数据包,因此适用于无混合的ULP BLE芯片。我们还提出了BLE的智商采样能力的创新使用来重新使用标准WiFi数据包。我们使用SIMD(单个指令多个数据)加速设计有效的算法,以实时检测,同步和解码WiFi数据包。DREW还实现了WiFi的CS-MA/CA和时机,从而在ULP BLE设备中添加了直接的WiFi连接。与先前的工作不同,Drew唯一支持QPSK,因此将下行链接吞吐量加倍。这种2倍吞吐量增加对于先前工作无法支持的新应用程序至关重要。尤其是Drew可以从WiFi到ULP BLE芯片流无损,Hifi质量的音频。由于立体声音频需要1.411Mbps的吞吐量,因此由于其1Mbps的限制,任何先前的工作都能支持此重要应用程序。CCS概念
工艺: TSMC 40nm ULP 速率: 1Mbps/2Mbps MCU : ARM Cortex-M0+ 休眠电流: 2.5uA Adv 1.28s 20uA SDK 支持 SIG Mesh 支持锂电池供电 符合 BQB/SRRC/FCC/CE
MCX L系列工业和物联网(IIOT)MCUS MCUS具有高达96 MHz的ARM®Cortex®-M33核心,ARM®Cortex®-M0+核心高达10 MHz。本系列具有我们的自适应动态电压控制(ADVC),用于在低频操作下优化功耗。与传统的低功率MCUS相比,专用的超低功率(ULP)Sense域允许低功率外围设备运行,同时将主要核心保持在深度动力模式下。这避免了事件触发,并将数据获取保持在极低的功率水平。
摘要 - 低温磷化物(INP)高电子动力晶体管(HEMT)低噪声放大器(LNA)用于在4 K处的Qubits读数放大,其中冷却能力有限地暗示活性电路的DC功率是一个必不可少的设计约束。在本文中,在4 K处的超功率(ULP)操作下INP HEMT的RF和噪声性能已被表征。 将INP HEMT的小信号和噪声参数模型提取到1 µW。噪声性能和直流功耗之间的权衡是根据排水电流和排水电压分析的。 制造了4–6 GHz混合低温HEMT LNA专为量子读数而设计的,并针对低于1 MW DC功率的最低噪声进行了优化。 在4 K时测量的LNA的测量性能达到23.1 dB平均增益,平均噪声温度为200 µW DC功率。在本文中,在4 K处的超功率(ULP)操作下INP HEMT的RF和噪声性能已被表征。将INP HEMT的小信号和噪声参数模型提取到1 µW。噪声性能和直流功耗之间的权衡是根据排水电流和排水电压分析的。制造了4–6 GHz混合低温HEMT LNA专为量子读数而设计的,并针对低于1 MW DC功率的最低噪声进行了优化。在4 K时测量的LNA的测量性能达到23.1 dB平均增益,平均噪声温度为200 µW DC功率。
GC 21-06寻求2021年9月8日发布的全面补救措施,该备忘录扩大了NLRA领导下ULP的受害者的补救措施。这包括对受非法行为影响的工人的全面救济,包括赔偿诸如医疗保健费用和雇主诉讼造成的滞纳金等损害。本备忘录还详细介绍了各种补救措施,以实现非法射击,并提出了更强大的措施,以解决工会组织工作期间违反劳动法的措施,例如与雇员的访问,向组织成本,公开通知和强制性管理培训进行报销。最后,它建议对违反议价的补救措施。
AE 对抗性示例 AI 人工智能 API 应用程序接口 BDP 边界差分隐私 BIM 基本迭代方法 CIFAR 加拿大高级研究院 CNN 卷积神经网络 CW Carlini 和 Wagner(攻击) DNN 深度神经网络 DP-SGD 差分隐私随机梯度下降 FGSM 快速梯度符号法 GNN 图形神经网络 IP 知识产权 JPEG 联合图像专家组 JSMA 基于雅可比矩阵的显著性图 KNHT 键控非参数假设检验 L-BFGS 有限内存 Broyden-Fletcher-Goldfarb-Shanno(算法) MNIST 改良的国家标准与技术研究所 MNTD 元神经木马检测 PATE 教师集合的私有聚合 PCA 主成分分析 PGD 项目梯度下降 PRADA 防止 DNN 模型窃取攻击 ReLU 整流线性单元 RNN 循环神经网络 RONI 拒绝负面影响 SAI 保护人工智能 SAT 可满足性 SGD 随机梯度下降 SMT 可满足性 模理论 STRIP STRong 有意扰动 TRIM 基于修剪的算法 ULP 通用试金石
(2008 年 - 2018 年)...................................................................................................................... 13 图 9:英国脱欧后核实的排放量、旧上限和修订的上限。 ................................................................................................ 14 图 10:欧盟 28 国电力部门的二氧化碳排放量和发电碳强度(2005-2020 年) ............................................................................................. 17 图 11:不同热效率的转换价格(与欧盟价格相比) ............................................................................................. 17 图 12:德国燃料转换的证据 ............................................................................................................................. 18 图 13:拍卖收入的使用情况 ............................................................................................................................. 19 图 14:配额的净成本 ............................................................................................................................. 20 图 15:免费配额的累计盈余——炼油、钢铁和水泥熟料 ................................................................ 20 图 16:跨部门修正因子对铝、造纸及纸浆 ULP 部门的影响 ........................................ 21 图 17:四个部门间接成本的高端估算 ............................................................................................. 22 图 18:EUA 交易量 ......................................................................................................................................... 24 图 19:累计未平仓合约的季节性 ......................................................................................................................... 25 图 20:EU ETS 拍卖覆盖率 ......................................................................................................................... 25 图 21:拍卖价格与现货价格之间的月平均差额 ......................................................................................................... 26 图图 22:持有成本 – EUA 与 AAA 欧盟五年期债券 ...................................................................................................... 26 图 23:波动率 ................................................................................................................................................ 27 图 24:EUA 和 TNAC 的供应与需求 ...................................................................................................................... 27 图 25:EUA 价格预测 ...................................................................................................................................... 28 图 25:不同气候目标中 ETS 和 ESR 部门的相对贡献(与 2005 年排放量相比)– ETS