完全自主的无人驾驶飞机被定义为“没有远程人类飞行员的预编程的战斗,包括响应运行时观察的任务特定行动” [1]。在2023年首次通过浮游的边缘在超轻无人机上实现这一目标[2]。通过克服板载无人机智能的重量和尺寸限制,即可激发小型,便宜,轻巧但出色的无人机在拥挤的城市环境中运行的无人机,而没有人类飞行员。从公共安全和监管批准的角度来看,这很有吸引力,因为这种无人机的动能远低于较大且重型无人机的动能[3]。从业务角度来看,这也很有吸引力,因为当今无人机操作中最昂贵的部分是训练有素的人类飞行员,他必须持续持续无人机[4]。我们专注于无有效的主动视力任务[5],[6],例如识别和跟踪目标,而不是涉及大量有效载荷的商品交付等任务。在本文中,我们探讨了今天我们距离这一愿景成为商业现实的距离。如果需要一个全新的定制无人机和低延迟无线网络的生态系统,则商业化的途径将是漫长而风险的。另一方面,如果基于Cloudlet的部署具有现有的商业现成(COTS)组件,可以集成到满足现实世界用例的性能和敏捷性需求的工作系统中,那么愿景就可以实现。最初是在1950年代构思的,以表征战斗飞机中的人机共生,这因此,我们问:“使用COTS Ultralight无人机,4G LTE无线网络和Cloudlet硬件,是否适用于现实世界中主动视觉任务的Fload Edge的端到端性能?”为了回答这个问题,我们介绍了无人机Ooda循环的概念。
摘要 全球清洁能源服务的提供是 21 世纪面临的一项关键挑战。为了提供此类服务,大型太阳能发电场的数量和规模显然将继续增长。原则上,超轻膜轨道太阳能反射器可以在一天中的关键黎明/黄昏时段照亮大型太阳能发电场,从而提高地面太阳能的利用率。关键优势在于,只需要将相对较小的质量运送到地球轨道。本文将讨论与此类太空能源服务的开发、部署和运营相关的技术挑战。本文将讨论业务发展模式以及监管问题,最后将提出综合技术示范路线图。
INID XS 读卡器系列 INID XS RF DistriFlex® 读卡器系列提供灵活的门禁读卡器,用于读取高频 13.56 MHz 和低频 125 kHz Prox 凭证。INID XS RF DistriFlex® 读卡器有两种型号:仅高频 SmartReader XS 以及组合低频和高频 MultiSmart XS。INID XS 读卡器带或不带 PIN 键盘,具有用于 Wiegand、时钟和数据、TTL 和 RS485 的软件控制接口。现场可编程功能可为您的投资提供面向未来的保障。INID XS 读卡器支持的技术:ISO14443-3A:MIFARE® Classic、MIFARE Ultralight®。ISO14443-4A:MIFARE® DESFire® EV1、EV2 和 V0.6、SmartMX。ISO14443-4B:Infineon、Atmel 和 ST microelectronics。NFC:点对点以及对被动凭证和设备的支持。 LF-Prox:EM4102 和为 HID®、AWID®、QuadraKey 和 GE/CASI® ProxLite® LF 近距离读卡器编程的凭证。输出协议 INID XS 读卡器可配置为 OSDP,包括安全通道或传统访问控制:Wiegand、时钟和数据、TTL。
摘要 全球清洁能源服务的提供是 21 世纪面临的一项关键挑战。为了提供此类服务,大型太阳能发电场的数量和规模显然将继续增长。原则上,超轻膜轨道太阳能反射器可以在一天中的关键黎明/黄昏时段照亮大型太阳能发电场,从而提高地面太阳能的利用率。关键优势在于,只需要将相对较小的质量运送到地球轨道。本文讨论了与此类太空能源服务的开发、部署和运营相关的技术挑战。本文讨论了业务发展模式以及监管问题,最后提出了综合技术示范路线图。
本文介绍了 TIA,一种用于航空图像采集的工具箱。TIA 为有人驾驶和无人驾驶飞机添加了工具,简化了与航空图像采集和处理相关的任务。实施 TIA 的第一步是进行需求分析,并生成一系列有用的功能。这些功能包括任务规划、自动任务执行、飞行员引导以及使用 GPS 接收器对照片和视频帧进行地理参考。TIA 的实施架构由三个计算机模块组成:充当显示器/键盘单元的掌上电脑、主计算机和摄像头控制器。每个计算机模块都有相应的软件模块。该工具箱已在超轻型飞机上进行了测试,目前正在集成到固定翼无人机 (UAV) 中。
本文介绍了 TIA,一种用于航空图像采集的工具箱。TIA 为有人驾驶和无人驾驶飞机添加了工具,简化了与航空图像采集和处理相关的任务。实施 TIA 的第一步是进行需求分析,并生成一系列有用的功能。这些功能包括任务规划、自动任务执行、飞行员引导以及使用 GPS 接收器对照片和视频帧进行地理参考。TIA 的实施架构由三个计算机模块组成:充当显示器/键盘单元的掌上电脑、主计算机和摄像头控制器。每个计算机模块都有相应的软件模块。该工具箱已在超轻型飞机上进行了测试,目前正在集成到固定翼无人机 (UAV) 中。
摘要:在之前的一篇论文中,作者讨论了当前阻碍变形系统商业应用的障碍。在这篇文章中,作者对所提出的架构的现状以及为使它们能够安装在商用飞机上而应满足的需求表达了批判性的看法。这种区别至关重要,因为军事和民用问题和需求非常不同,而且解决方案和要克服的困难也大不相同。然而,在民用领域,根据飞机的大小,可能还存在其他差异,从大型喷气式飞机到通勤机或通用航空,它们可分为旅游、特技、超轻型飞机等,每种飞机都有自己的特点。因此,本文旨在尽可能追踪一个共同的技术分母,并设想实际应用的未来前景。
1.0 A22 简介 A-22 是一种非特技双座超轻型飞机,专为休闲飞行和白天目视飞行规则初级训练而设计,可在草地或硬质跑道上飞行。它是一种金属空气框架高翼支柱支撑单翼飞机,配有并排座位和宽大的驾驶舱玻璃。固定三轮起落架配有液压制动器和可操纵的前轮,与方向舵踏板相连。标准动力装置是 100 bhp Rotax 912ULS,驱动地面可调 3 叶复合螺旋桨。两个机翼油箱的总燃油容量为 92 升。标准 A22 飞机配备 Rotax FLYdat 数字发动机仪表组。在驾驶这架飞机之前,请确保您完全熟悉 FLYdat 操作 - 请参阅本手册第 10 节。
在三个学科中正在进行的发展使Terraforming恢复了研究议程。首先,包括地球在内的气候建模已经成熟。第二,合成生物学的进步提高了我们对极端粒子的知识[1]和我们设计其特性的能力,为量身定制生命的新可能性在火星极端繁衍生息。第三是太空科学领域的许多发展。像星舰这样的车辆将使地球上质量的容量> 100×每火星着陆[2]。我们对火星基础科学的理解已经成熟,这使人们达成共识,即温暖的火星将保留数十亿年的挥发物[3]。最后,使用超轻材料,太阳帆或纳米颗粒出现了新的火星变暖选择[4-6]。因此,对绿色火星的研究议程进行了详尽的了解[7]是及时的。