1 Ansh Nikhra 2000910200018 Rxlogix 2 Ayushi Ojha 2000910200028 K&S Partners,Emerson 3 Shruuti Mittal 2000910200095 Newgen 4 Utkarsh Singh 200091010200102001020010200107 K&S Partners,Samsunk 5 Yashaswini Srivastava 2000910200113 Newgen 6 Abhik Mourya 2000910210001 Paytm 7 Abhishek Singh Chauhan 2000910210003 K&S Partners 8 ATI GUPTA 20009101010016 CADENCE 9 RIII 9 RIIII Agrawal 2000910210043 UKG 10 Aaditya Pratap Malik 2000910310001 TCS Ninja 11 Aakarsh Gupta 2000910310002 Spark Minda,TCS Ninja 12 Abhishek Maurya Maurya 2000910101010101010101010 Spark Minda 13 2000910310017 Spark Minda 14 Aditya Singh 2000910310021 Akash Gupta 2000910310027 Spark Minda 16 Akash Shukla 2000910310029 Newgen 17 17 17 17 17 17 17 171010101010101010MM Bansal 2000910310031 Quontplay 19 Aman Maurya 2000910310032 Newgen 20 Amish Verma 2000910310033 Newgen 21 Amisha Pandney 2000910310034 UKG 22 AMIT GANGWAR Kandwal 2000910310042 Paytm 24 Anukriti Jaiswal 2000910310043 Acencencencenture,Newgen 25 Anushka Sribastava 200091010045 Accenture 26 Arnika Sharma Sharma 2000910310046 Immerson 27 2000910310054 Ericsson 28 Asmita Rai 2000910310055 K&S Partners 29 Ayush Narayan Sinha 2000910310057 Accenture,Newgen 30 Divyansh Goenka Goenka Goenka 2000910310063 UKG 31 ukg 31 Ggaurang tygaurang tygaurang tygaurang tygaurang tygaurang tygaurang tygaurang tygaurang tygaurang tygaurang tygaurang tygauragigigigigigiii 2000910310068 PAYTM 32 GAUURAV MISHRA 2000910310069 DACBY 33 HARSHIL AWASTHI 2000910310074 ACPENTURE 34 HARSHITA 2000910310075 NEWGEN NEWGEN 35 HRDYANSH PANDEY 200091010078 SHIN SHIN SHIN SHIN SHIN SHIN SHIN SHIN SHIN SHIN学习36 Hrithik Yadav 2000910310079 Avaada 37 Jatin Kumar Sharma 2000910310081 Persist Ventures
通信可以广泛定义为信息从一个点转移到另一点。当将信息在任何距离内传达时,通常都需要通信系统。在通信系统中,信息传输经常是通过将信息叠加到电磁波上的,该信息充当信息信号的载体。然后将此调制载体传输到接收到的所需目的地,并通过解调获得原始信息信号。使用以无线电频率以及微波和毫米波频率运行的电磁载波波和毫米波频率开发了该过程的复杂技术。但是,也可以使用从频率的光范围选择的电磁载体来实现“通信”。
新兴证据表明心房颤动与认知功能障碍有关,与中风无关,但其潜在机制仍不清楚。在这项来自瑞士心房颤动研究 (NCT02105844) 的横断面分析中,我们研究了血清神经丝轻蛋白(一种神经元损伤生物标志物)与心房颤动患者的 (i) CHA 2 DS 2 -VASc 评分(充血性心力衰竭、高血压、年龄 65-74 岁或 > 75 岁、糖尿病、中风或短暂性脑缺血发作、血管疾病、性别)、临床和神经影像学参数和 (ii) 认知测量之间的关联。我们使用超灵敏单分子阵列分析技术在 1379 名心房颤动患者(平均年龄 72 岁;女性,27%)的样本中测量了血清中的神经丝轻蛋白。通过脑 MRI 评估缺血性梗塞、小血管疾病标志物和标准化脑体积。认知测试包括蒙特利尔认知评估、连线测试、语义语言流畅性和数字符号替换测试,并使用主成分分析进行总结。使用单变量和多变量线性回归分析结果。神经丝光与 CHA 2 DS 2 -VASc 评分相关,每单位 CHA 2 DS 2 -VASc 增加,神经丝光平均增加 19.2% [95% 置信区间 (17.2% , 21.3%)]。在调整年龄和 MRI 特征后,这种关联仍然存在。在多变量分析中,与神经丝光相关的临床参数包括年龄较高[每 10 年神经丝增加 32.5 % (27.2 % , 38 %)]、糖尿病、心力衰竭和外周动脉疾病[分别为 26.8 % (16.8 % , 37.6 %)、15.7 % (8.1 % , 23.9 %) 和 19.5 % (6.8 % , 33.7 %) 的神经丝较高]。平均动脉压与神经丝呈曲线关联,有证据表明存在反线性和 U 形关联。与神经丝相关的 MRI 特征是白质病变体积和大面积非皮质或皮质梗塞体积[相应病变对数体积每增加一个单位,神经丝分别增加 4.3%(1.8%,6.8%)和 5.5%(2.5%,8.7%)],以及标准化脑体积[每 100 cm3 神经丝数量较多,脑体积较小,分别为 4.9%(1.7%,8.1%)]。单变量分析显示,神经丝光与所有认知指标呈负相关。调整临床和 MRI 变量后,效应大小减小,但与第一个主成分的关联仍然明显。我们的结果表明,在心房颤动患者中,通过血清神经丝光测量的神经元丢失与年龄、糖尿病、心力衰竭、血压和血管性脑病变有关,并与标准化脑容量和认知功能呈负相关。
• 建立太空局:在主席罗森沃塞尔的领导下,为了应对委员会面前日益增多且新颖的卫星应用,该机构成立了有史以来第一个太空局。该局旨在支持美国在太空经济中的领导地位,促进解决卫星政策的长期技术能力,并改善与其他机构在这些问题上的协调。FCC 是世界上第一个建立太空局的电信机构。 • 创造单一网络未来:FCC 一致通过了一项名为“太空补充覆盖”的新监管方案,这使其成为世界上第一个发布框架的监管机构,该框架使用以前仅分配给地面服务的频谱将卫星直接连接到消费者手机。 • 更新轨道碎片缓解和空间可持续性规则:FCC 将低地球轨道卫星在完成任务后可以在轨道上停留的时间从 25 年缩短至 5 年。执法局还向一家未能遵守其轨道碎片缓解计划的公司发出了第一张罚单。
当前正在使用的密码算法。为了解决这个问题,许多研究组织,学术机构和公司正在积极开发量子安全通信技术,以确保我们的通信和数据存储系统的安全性。该会议的目的是提高人们对一般量子技术的认识,尤其是量子通信,将来自学术界,研究机构,行业,初创企业和政府组织的国家和国际专家汇集在一起,致力于开发量子技术。这些技术的用户在各个部门中。国防服务,银行业和金融科技行业,电信/ICT部门还受邀加强通信基础设施的安全性,以抵抗量子计算机构成的威胁。
在大多数微波管中,信号被放置在空腔间隙中,并且当电子面对最大对立时,电子被迫在时间上跨越间隙。在反对下跨越间隙会导致能量转移到空腔间隙信号中。当间隙电压是正弦的时间变化时,电荷紧身固定是连续且均匀的,通常是这种情况时,在腔体和越过间隙的电荷之间没有能量的净传递。这是因为在半周期中,当能量传递与上一半循环时,在半周期中相反,导致循环中无净能量转移。要具有从电子束到间隙信号电压的净能量传递,最大值的最大值将压缩的电荷被压缩到薄板或束中,因此它需要更少的时间来跨越间隙,并且安排了束束的束缚,以使峰值间隙电压处于峰值间隙电压,从而使束最大的反对面和降低信号从信号信号到信号上。