要将以环境得出的元编码数据转换为社区矩阵进行生态分析,必须首先将序列聚集到操作分类单元(OTU)中。此任务对于包括大量带有不完整参考库的数据,包括大量的分类单元。OptimoTU提供了一种具有分类学意识的OTU聚类方法。它使用一组分类学识别的参考序列来选择最佳的遗传距离阈值,以将每个祖先分类群分组为最与后代分类单元最匹配的集群。然后,查询序列根据初步分类学标识和其祖先分类群的优化阈值聚类。该过程遵循分类学层次结构,从而将所有查询序列的所有查询序列完全分类为命名的分类学组以及占位符“ Pseudotaxa”,这些序列适合无法分类为相应等级的命名分类单元的序列。Optimutu聚类算法是作为R软件包实现的,在C ++中实现了速度的计算密集步骤,并合并了成对序列对齐的开源库库。距离也可以在外部计算,并且可以从UNIX管道中读取,从而允许大型数据集聚类,在该数据集中,整个距离矩阵将不方便地存储在内存中。Optimutu生物信息学管道包括一个完整的工作流程,用于配对端的Illumina测序数据,其中包含了质量过滤,DeNoising,Wratifact删除,分类学分类以及与Optimotu的OTU集群。开发了用于高性能计算簇的OptimoTU管道,并将其缩放到每个样品和数万个样本的数据集中。
• Dr. Christina Castellani Department of Pathology and Laboratory Medicine, Schulich School of Medicine & Dentistry christina.castellani@schulich.uwo.ca • Dr. Art Poon Department of Pathology and Laboratory Medicine, Schulich School of Medicine & Dentistry apoon@uwo.ca • Dr. Vera Tai Department of Biology, Faculty of Science vtai4@uwo.ca Course Summary Bioinformatics has become an现代生物学和生物医学研究中的基本技能。这在很大程度上是由新的遗传测序技术驱动的,这些技术会在一夜之间产生千兆字节的数据,但是其他技术(例如遥感和图像/信号处理)在包括生态学,病理学和神经科学在内的更广泛的领域都在推动类似的挑战。尽管商业软件具有图形用户界面和“一键”分析工作流程,但这些通常是昂贵的,专有的(封闭源)程序,这些程序被限制为最受欢迎的分析的狭义选择。但是,生物学是多种多样的(不同的生物不会按照与模型物种相同的规则发挥作用),并且研究是由创新,定制和提出新问题驱动的。因此,对自定义生物信息流动流的能力有普遍的需求。本课程的目标是为学生提供不同的背景,并且没有以生物信息学基础的基础为基础的编程经验。但是,与使用现有程序相比,将更加重视编程和开发自定义分析的技能。该课程的结构类似于标准的生物信息学工作流:在Unix状系统中获得和管理数据文件;开源工具和脚本语言(例如Bash或Python)用于操纵和清洁数据;和
Assistant Professor (Post-doc) at Jagiellonian University (f/m/d) Location : Kraków (Poland) Salary : Monthly salary of 8000-12000 PLN gross, depending on experience Closing date : 19th July 2024 Description of the Centre The Dioscuri Centre for Modelling of Posttranslational Modifications is a partner group of the Theoretical Biophysics Department at the Max Planck Institute of生物物理学。虽然集团位于波兰,但它与生物物理学研究所和马克斯·普朗克社会保持着牢固的联系。对位置的描述:翻译后修饰建模的Dioscuri中心正在寻找愿意加入我们的小组的研究人员,并探索糖蛋白与细胞外基质(ECM)组件之间的相互作用。成功的候选人将开发计算工具,构建分子模型并执行大规模的分子动力学模拟,以了解在ECM限制下如何影响聚糖。我们提供刺激性和开放的工作环境,竞争性的工资,尖端计算资源,跨国和多学科团队,与德国法兰克福Max Planck Biophysics的理论生物物理学系紧密合作,德国,德国,许多社交效益。要求:生物物理学,计算生物学,化学,生物信息学或相关领域的博士学位。执行分子动力学 /蒙特卡洛 /对接模拟的经验,以及构建大型生物分子复合物模型的经验。熟悉UNIX和编程经验(Python,Bash)是必不可少的。欢迎对细胞生物学的了解和大规模模拟中的经验。应用程序应包括出版物列表(以及各自的发布者和页码),非开放访问出版物的电子版本。有关应用程序的详细信息,请参见:https://mcb.uj.edu.pl/en_gb/oferty-pracy/-/ journal_content/56_instance_wbr3lthefyue/150912362/156319680
用于复杂片上系统设计的晶体管级快速 SPICE 模拟器的方法开发。(2005-2007、2010)负责开发设计方法来验证定制片上系统设计的功能和电气与信号合规性。• 与设计工程师密切合作,解决模拟问题、满足设计期限并通过脚本和工程工作流程的改进自动完成任务• 因关注部门内部客户而获得同行认可奖的最高获得者。协助设计工程师调试模拟中的意外结果并发现设计问题,包括价值 7 亿美元的 Cougarpoint PCH SATA 召回。片上系统设计工艺迁移的晶体管级优化方法开发和维护(2007、2009-2011)• “臭鼬工厂”团队成员,开发方法并自动在工艺节点之间转换电路设计。• 开发了一个用于晶体管设计多变量、多目标优化的通用框架。 • 因“信号完整性噪声和时序分析的 IBIS(I/O 缓冲区信息规范)/.LIB 模型(数学模型)生成的开发和维护”项目而获得部门级奖。(2007-2010) • 负责开发一种自动化方法,将复杂的 I/O 驱动程序转换为等效的 Thevenin 或 Norton 电路。 • 在规范限制内解决复杂晶体管设计与“简单”数学模型之间的不匹配问题 研究生实习培训师和部门培训师(2007-2010) • 负责让新毕业生了解英特尔设计流程、了解电路设计和模拟知识,以及掌握包括撰写报告和向经理及其内部客户推销自己在内的软技能。 • 提供部门级的 UNIX 计算基础知识和专有计算环境培训。
基础课程(Fndn) MA100 工程数学 - I(3-1-0) 4 MA101 工程数学 - II(3-1-0) 4 PH100 物理(3-0-0) 3 PH101 物理实验室(0-0-3) 1 CY100 化学(3-0-0) 3 CY101 化学实验室(0-0-3) 1 CV100 工程力学(3-1-0) 4 EE100 电气工程要素(3-1-0) 4 EC100 电子与通信工程要素(3-1-0) 4 ME100 机械工程要素(3-0-0) 3 ME101 工程制图 (1-0-3) 2 ME102 研讨会 (0-0-3) 1 CS100 计算机编程 (3-0-0) 3 CS101 计算机编程实验室 (0-0-3) 1 HU100 专业交流 (3-1-0) 4 HU300 工程经济学 (3-1-0) 4 HU301 管理理论与实践 (3-1-0) 4 课程特定核心 (PSC) CS200 数字系统设计 (3-1-0) 4 CS201 数据结构与算法 (3-1-0) 4 CS202 计算机组织与架构 (3-1-0) 4 CS203 数据通信原理 (3-1-0) 4 CS204 离散数学 (3-1-0) 4 CS205 数字系统实验室 (0-0-3) 1 CS206 数据结构实验室(0-0-3) 1 CS207 Unix 编程实验室 (0-0-3) 1 CS250 微处理器和接口 (3-1-0) 4 CS251 计算机图形学 (3-1-0) 4 CS252 计算理论 (3-1-0) 4 CS253 系统编程 (3-1-0) 4 CS254 微处理器实验室 (0-0-3) 1 CS255 计算机图形学实验室 (0-0-3) 1 CS290 研讨会 (0-0-2) 1 CS300 操作系统 (3-1-0) 4 CS301 数据库系统 (3-1-0) 4 CS302 软件工程 (3-1-0) 4 CS303 计算机网络 (3-1-0) 4 CS304 操作系统实验室 (0-0-3) 1 CS305 数据库系统实验室 (0-0-3) 1 CS306 网络实验室(0-0-3) 1 CS350 算法设计与分析 (3-1-0) 4 CS351 编译器设计 (3-1-0) 4 CS352 分布式计算系统 (3-1-0) 4 CS353 互联网技术与应用 (3-1-0) 4 CS354 编译器实验室 (0-0-3) 1 CS355 Web 技术实验室 (0-0-3) 1 CS440 实践培训 1
生物数据库是一个大型的持久数据,通常与旨在更新,查询和检索系统中存储的数据组件的计算机软件相关联。一个简单的数据库可能是一个包含许多记录的单个文件,每个文件都包含相同的信息。它们包含来自研究领域的信息,包括基因组学,蛋白质组学和系统发育学。生物数据库中包含的信息包括基因功能,结构,定位(细胞和染色体),突变的临床效应以及生物序列和结构的相似性。生物数据库可以广泛地分为序列和结构数据库。核酸和蛋白质序列存储在序列数据库中,而结构数据库仅存储蛋白质。这些数据库是协助科学家分析和解释从生物分子结构及其相互作用的许多生物学现象的重要工具,以及生物体的整个代谢以及理解物种的进化。这些知识有助于促进对抗疾病的斗争,有助于开发药物,预测某些遗传疾病,并在生命史上发现物种之间的基本关系。当前,许多生物信息学工作都与数据库的技术有关。这些数据库包括GenBank或蛋白质数据库(PDB)等基因数据的“公共”存储库,以及涉及基因映射项目或生物技术公司持有的研究小组使用的私人数据库。使此类数据库通过像Web这样的开放标准访问非常重要,因为生物信息学数据的消费者使用了一系列计算机平台:从开发人员和策展人偏爱的功能更强大,更禁止的UNIX框到更友好的Mac通常创建了计算机Wary Biologists的实验室。RNA和DNA是存储有关生物体的遗传信息的蛋白质。这些大分子具有固定结构,可以在生物信息学的工具和数据库的帮助下由生物学家分析。
Linux操作系统的内核类似于Unix的内核。Linux操作系统建立在Linux内核上,Linux内核是全球广泛使用的操作系统内核。Linux发行版通常用于传统计算机系统,但Linux也用于路由器等嵌入式设备上。Linux内核也是Android移动和平板电脑操作系统的基础。Linux内核的应用程序编程接口(API)允许用户程序与内核进行通信,旨在非常稳定,并且不会干扰用户PACE程序(某些程序,包括具有图形用户接口的程序,也取决于其他API)。设备驱动程序作为内核操作的一部分管理硬件; “主线”设备驱动程序也被设计为非常稳定。与许多其他内核和操作系统相比,内核和可加载内核模块(LKMS)之间的接口并不是要特别可靠的设计。Linux内核是免费和开源软件的众所周知的示例,因为它是由全世界的贡献者创建的。关于日常开发的讨论在Linux内核邮件列表(LKML)上举行。虽然某些固件图像是在不同的非免费许可下提供的,但Linux内核是根据GNU通用公共许可证版本2(GPLV2)分发的。芬兰赫尔辛基大学的一名21岁学生名为Linus Torvalds,于1991年4月开始开发一些基本的操作系统概念。他从终端驱动程序和用英特尔80386组装代码编写的任务切换器开始。Torvalds于1991年8月25日提交给Usenet NewsGroup Comp.os.minix。在此之后,更多的人向该项目贡献了代码。Linux内核很早就收到了Minix社区的想法和代码贡献。GNU项目当时已经开发了免费操作系统所需的许多零件,但是该项目自己的内核GNU Hurd尚未完成且无法使用。BSD操作系统仍受法律限制的约束。尽管功能有限,但Linux很快吸引了开发人员和消费者。建立后的第一个帖子。comp.os.linux于1992年3月31日从alt.os.linux重命名。
1 专业选修课(15 个学分)所有学生必须完成五门 3 学分的高级选修课。至少 12 个学分必须是 CSC 课程。除了下面列出的课程外,任何 600 级 CSC 课程(CSC 601、CSC 602、CSC 648 和 CSC 694 除外)都可以用作选修课。该部门还允许将一门 CSC 研究生课程用作高级选修课(700 级或更高,且非配对课程,CSC 895、CSC 898、CSC 897、CSC 899 除外)。例外情况必须事先得到高级顾问的批准。 CSC 520 计算理论(3 个单元) CSC 600 编程范式和语言(3 个单元) CSC 615 UNIX 编程(3 个单元) CSC 620 自然语言技术(3 个单元) CSC 621 生物医学成像和分析(3 个单元) CSC 630 计算机图形系统设计(3 个单元) CSC 631 多人游戏开发(3 个单元) CSC 641 计算机性能评估(3 个单元) CSC 642 人机交互(3 个单元) CSC 645 计算机网络(3 个单元) CSC 647 量子计算和量子信息科学简介(3 个单元) CSC 649 搜索引擎(3 个单元) CSC 651 系统管理(3 个单元) CSC 652 安全和数据隐私简介(3 个单元) CSC 656 计算机组织(3 个单元) CSC 657 生物信息计算(3 个单元) CSC 658 编程咖啡馆(3 个单元) CSC 664 多媒体系统(3 个学分) CSC 665 人工智能(3 个学分) CSC 667 互联网应用设计与开发(3 个学分) CSC 668 高级面向对象软件设计与开发(3 个学分) CSC 671 深度学习(3 个学分) CSC 675 数据库系统简介(3 个学分) CSC 676 软计算与决策支持系统(3 个学分) CSC 680 移动设备应用程序开发(3 个学分) CSC 690 交互式多媒体应用程序开发(3 个学分) CSC 698 计算主题(3 个学分) CSC 699 独立学习(1-3 个学分) MATH 400 数值分析(3 个学分) MATH 425 应用与计算线性代数(3 个学分) MATH 448 统计学习与数据挖掘简介(3 个学分)
现代纳米材料涂层工艺的特点是高温环境和复杂的化学反应,需要精确合成定制设计。这种流动过程极其复杂,除了粘性行为外,还具有传热和传质特性。智能纳米涂层利用磁性纳米粒子,可以通过外部磁场进行操纵。数学模型提供了一种廉价的洞察此类涂层动力学过程固有特性的方法。受此启发,在当前的工作中,开发了一种新的数学模型,用于双催化反应物种在轴对称涂层中扩散,该涂层包裹强制对流边界层流,该流来自浸没在饱和磁性纳米流体的均质非达西多孔介质中的线性轴向拉伸水平圆柱体。其中包括均相和异相反应、热源(例如激光源)和非线性辐射传输。部署了 Tiwari-Das 纳米级模型。使用 Darcy-Forchheimer 阻力公式来模拟多孔介质纤维的体积多孔阻力和二阶惯性阻力。磁性纳米流体是一种水性导电聚合物,由基础流体水和磁性 TiO 2 纳米粒子组成。TiO 2 纳米粒子是一种化学反应物质 (A),还存在第二种物质 (B)(例如氧气),它也发生化学反应。粘性加热和欧姆耗散也包括在内,以产生更物理上真实的热分析。这里提出的具有物质扩散(物质 A 和 B)的非线性守恒方程通过适当的流函数和缩放变量转换为一组非线性联合多阶 ODE。在 MATLAB bvp5c 程序中,使用四点 Gauss-Lobotto 公式求解上升非线性常微分边界值问题。使用 Adams-Moulton 预测校正数值方案(Unix 中编码的 AM2)进行验证。包括速度、温度、物质 A 浓度、物质 B 浓度、表面摩擦、局部努塞尔特数以及物质 A 和 B 局部舍伍德数的广泛可视化。关键词:Darcy-Forchheimer 模型;水性功能磁性聚合物;智能涂层流;二氧化钛纳米颗粒分数;非线性辐射;均相和非均相化学反应;数值;边界层包裹;努塞尔特数;舍伍德数。