摘要:准确高效地识别脑肿瘤对于疾病诊断和以患者为中心的药物开发至关重要。在本研究中,我们提出了一种利用 H-DenseAttentionUNet 架构进行脑肿瘤检测的新方法,该架构是一种混合模型,结合了 U-Net、密集连接网络和注意力机制的元素。设计的模型专门用于检查磁共振成像 (MRI) 数据,利用这种成像方式提供的卓越软组织对比度和复杂的解剖细节。H-DenseAttentionUNet 架构的特点是能够通过密集连接的块捕获复杂的细节,而注意力机制则增强了网络对 MRI 图像中显着特征的关注。该模型旨在提供脑肿瘤的精确分割和定位,促进对肿瘤边界和特征的全面了解。根据初步研究结果,H-DenseAttentionUNet 在从 MRI 扫描中准确识别脑癌方面表现出很高的准确性。所提出的方法有望提高脑肿瘤检测的效率和精确度,为临床医生提供宝贵的见解,以便在患者护理中及时做出明智的决策。
摘要 - 这项研究提供了深度学习模型的比较分析 - UNET,RES-UNET,RES-RES-UNET和NNUNET,可评估其在脑瘤,息肉和多级心脏分段任务中的表现。分析侧重于精确,准确性,召回,骰子相似性系数(DSC)和联合(IOU)的相交以评估其临床适用性。在脑肿瘤分割,RES-UNET和NNUNET中明显胜过UNET,在DSC和IOU分数中,RES-UNET领先,表明肿瘤描述的准确性均出色。同时,NNUNET在召回和准确性方面表现出色,这对于临床诊断和计划中可靠的肿瘤检测至关重要。在息肉检测中,NNUNET是最有效的,在所有类别中达到了最高的指标,并将其作为内窥镜检查中可靠的诊断工具证明了它。在复杂的心脏细分任务中,RES-UNET和RES-UNET在描述左心室方面非常出色,RES-UNET也导致右心室分割。nnunet在心肌分段中无与伦比,在精确,召回,DSC和IOU中取得了最高分数。结论指出,尽管有时会在特定指标中表现出色,但差异很小。NNUNET始终在整个实验中显示出卓越的整体性能。索引术语 - 深度学习,UNET,RES-UNET,RES-UNET,NNUNET,医学成像细分,临床应用特别是因为其高召回和准确性而引起的,这在临床环境中至关重要,可以最大程度地减少误诊并确保及时治疗,NNUNET在所有测试类别中的关键指标中的稳健表现将其确立为这些变化和复杂的分割任务的最有效模型。
Abstract: In brain imaging segmentation, precise tumor delineation is crucial for diagnosis and treatment planning. Traditional approaches include convolutional neural networks (CNNs), which struggle with processing sequential data, and transformer models that face limitations in maintaining computational efficiency with large-scale data. This study introduces MambaBTS: a model that synergizes the strengths of CNNs and transformers, is inspired by the Mamba architecture, and integrates cascade residual multi-scale convolutional kernels. The model employs a mixed loss function that blends dice loss with cross-entropy to refine segmentation accuracy effectively. This novel approach reduces computational complexity, enhances the receptive field, and demonstrates superior performance for accurately segmenting brain tumors in MRI images. Experiments on the MICCAI BraTS 2019 dataset show that MambaBTS achieves dice coefficients of 0.8450 for the whole tumor (WT), 0.8606 for the tumor core (TC), and 0.7796 for the enhancing tumor (ET) and outperforms existing models in terms of accuracy, computational efficiency, and parameter efficiency. These results underscore the model's potential to offer a balanced, efficient, and effective segmentation method, overcoming the constraints of existing models and promising significant improvements in clinical diagnostics and planning.
5倍交叉验证评估结果(1,2)表明,由于电离辐射和基因突变的影响,胶质瘤占中枢神经系统原发性肿瘤的27%(3-6)。胶质瘤的发病率随年龄增长而增加(1,2,6-8),不同级别的胶质瘤发病率不同。根据恶性程度,胶质瘤病理分为I至IV级,其中II级及以下为低级别胶质瘤(LGG),III级及以上为高级别胶质瘤(HGG)(9)。例如,HGG患者的中位生存期(MST)通常小于2年,而患有HGG的HGG患者的MST仅为4至9个月。此外,分子研究已发现了可增强诊断和提供生物标志物的特征(10)。异柠檬酸脱氢酶 1 和 2 (IDH1/2) 突变以及 X 编码蛋白 (ATRX) 和 TP53 突变的存在提示弥漫性星形细胞瘤,而 IDH1/2 突变与 1p19q 缺失相结合则提示少突胶质细胞瘤 (10)。受体酪氨酸激酶基因的局部扩增、端粒酶逆转录酶 (TERT) 启动子突变以及 10 号和 13 号染色体的缺失和 7 号染色体的三体性是胶质母细胞瘤的显著特征,可用于诊断目的 (10)。此外,LGG 中 B-Raf 原癌基因 (BRAF) 基因融合和突变的存在以及 HGG 中组蛋白 H3 的突变的存在也可以作为
像 UNet 这样的监督式深度学习网络在分割脑部异常(如病变和肿瘤)方面表现良好。然而,这类方法被提出用于单模态或多模态图像。我们使用混合 UNet Transformer (HUT) 来提高单模态病变分割和多模态脑肿瘤分割的性能。HUT 由两个并行运行的管道组成,其中一个基于 UNet,另一个基于 Transformer。基于 Transformer 的管道在训练期间依赖于 UNet 解码器中间层中的特征图。HUT 网络采用 3D 脑容量的可用模态,并将脑容量嵌入体素斑块中。系统中的变压器提高了全局注意力和体素斑块之间的长程相关性。此外,我们在 HUT 框架中引入了一种自监督训练方法,以提高整体分割性能。我们证明,在中风后病变解剖追踪 (ATLAS) 数据集的单模态分割中,HUT 的表现优于最先进的网络 SPiN,Dice 得分高出 4.84%,Hausdorffi 距离得分高出 41%。HUT 在脑肿瘤分割 (BraTS20) 数据集的脑部扫描中也表现良好,并且比最先进的网络 nnUnet 的 Dice 得分高出 0.96%,Hausdorffi 距离得分高出 4.1%。
摘要:深度学习技术已在医疗计算机视觉和图像处理的领域取得了突破性的研究结果。生成对抗网络(GAN)已证明了图像产生和表达能力的能力。本文提出了一种称为MWG-UNET的新方法(多个任务Wasserstein生成对抗网络U形网络)作为肺场和心脏细分模型,它具有注意机制的优势,以提高发电机的细分精度,从而提高了性能。尤其是,所提出的方法的骰子相似性,精度和F1得分优于其他模型,分别达到95.28%,96.41%和95.90%,而特定的五城市则超过了0.28%,0.90%,0.24%和0.24%和0.90%的模型。但是,IOU的值不如最佳模型0.69%。结果表明,所提出的方法在肺场分割中具有相当大的能力。我们的心脏的多器官分割结果实现了骰子相似性,而IOU值为71.16%和74.56%。对肺场的分割结果实现了骰子相似性,而IOU值为85.18%和81.36%。
摘要。早期发现和确定适当的治疗技术将建立癌症患者的耐力。诊断和治疗脑肿瘤的关键步骤是准确可靠的分割。鉴于其形状不平坦和不透明的边界,神经胶质瘤是最困难的脑癌之一。由于其设计存在显着差异,因此,神经胶质瘤脑生长的程序划分是一个流体主题。在本文中报告了改进的基于UNET的设计,用于自动从MRI图像中对脑肿瘤进行自动分割。培训语义部模型需要大量的精细澄清信息,这使得迅速适应不符合此要求的不熟悉类的挑战。最初的射击细分试图解决此问题,但存在其他缺陷。因此,在本文中讨论了几乎没有示意的示意图分割,以分解同时将原始分类与基本类别和足够模型分类的投机能力。上下文感知的原型学习(CAPL),用于通过利用早期信息从帮助测试中出现早期信息,并逐步增强逻辑数据到分类器,并根据每个问题图片的实质模制。结果揭示了开发模型的表现。
抽象的基于深度学习的方法在脑肿瘤图像分割中表现出色。但是,缺乏使用图像的频域特征来解决脑肿瘤病变的研究。为了使这一差距变化,本文提出了改进的网络SLF-UNET,这是一种二维编码器架构结构,结合了基于U-NET的空间和低频域特征。提出的模型有效地从空间和频域中学习信息。在此,我们通过在高频区域中使用零填充,并将卷积操作的一部分与卷积块相结合,从而结合了空间频域特征,并将卷积操作的一部分放置。我们的实验结果表明,我们的方法的表现优于Brats 2019和Brats 2020数据集的当前主流方法。
抽象深度学习是一种强大的技术,已应用于使用医学成像进行中风检测。中风是一种医疗状况,当大脑的血液供应中断时,会导致脑部损伤和其他严重的并发症。中风检测对于最大程度地减少损害并改善患者预后很重要。中风检测最常见的成像方式之一是CT(计算机断层扫描)。ct可以提供大脑的详细图像,可用于识别中风的存在和位置。深度学习模型,尤其是卷积神经网络(CNN),已经显示出使用CT图像检测中风的希望。这些模型可以学会自动识别图像中指示中风的模式,例如梗塞或出血的存在。在CT图像中用于中风检测的深度学习模型的一些示例是U-NET,通常用于医疗图像分割任务,而CNN已经过训练,这些CNN已经过训练,可以将脑CT图像分类为正常或异常。这项研究的目的是确定在没有造影剂的情况下拍摄的脑CT图像的中风类型,即闭塞(缺血)或出血(出血)。中风图像,并由医学专家构建数据集。深度学习分类模型通过超参数优化技术评估。并使用改进的UNET模型进行了分割,以可视化CT图像中的中风。分类模型,VGG16获得了%94成功。UNET模型达到了%60 iou,并检测到缺血和出血差异。
1 突尼斯埃尔马纳尔大学 (UTM) 生物物理与医学技术实验室 ISTMT,突尼斯 2 突尼斯蒙吉本哈米达国立神经病学研究所神经放射学系,突尼斯 3 突尼斯医学院生物物理与医学技术实验室,突尼斯 摘要 缺血性脑卒中是最常见的脑血管疾病,也是全球死亡和长期残疾的主要原因之一。及早发现缺血性脑卒中有助于医生及早诊断,从而大大减少死亡或残疾的可能性。医学研究中使用多种方式来检测缺血性脑卒中;不过,磁共振成像 (MRI) 仍然是该领域最有效的方式。最近,许多研究人员使用深度学习模型在 MRI 图像中检测缺血性脑卒中,并取得了令人鼓舞的结果。在本文中,我们提出了一种使用深度学习模型从 MRI 图像中自动分割缺血性中风病变 (ISL) 的方法。使用的 UNet 模型是混合框架,具有预训练的 ResNet50 架构。数据增强技术已被用于超越模型的准确性。所提出的工作流程已在公共缺血性中风病变分割挑战 (ISLES) 2015 数据集上进行了训练和测试。实验结果证明了我们的方法的性能效率,它实现了 99.43% 的平均准确率和 64.14% 的 Dice 系数 (DC)。我们的方法优于其他最先进的方法,更具体地说,在准确率方面。