旨在更好地了解这些稳健键的键合和反应性的研究已成为追求核废料修复的中心研究点。已经报道了在铀酰疾病中官能化U = O键的几种方法,最流行的是通过与甲硅烷基离子的反应性使用还原性裂解(图1)。4,5 One of the first reported examples detailing activation of the uranyl(VI) dioxo moiety was detailed by Ephritikhine in 2006, in upon the addition of excess silylating reagent (Me 3 SiX, where X = Cl, Br, or I), UO 2 I 2 (THF) 3 or UO 2 (OTf) 2 are converted to a tetravalent uranium halide salt, UX 4 (MECN)4。3这种反应性利用了强Si -O键形成的热力学驱动力,从而通过相应的卤化物的氧化来促进铀氧键的还原性裂解。6后来,爱与同事报告了通过还原性的硅烷基硅烷二烯化的键键激活的机理的进一步见解。在这项工作中,铀酰的协调
- - - e = - = 3; 2q3a5e:envercr:,!c)'--- = --- E E 8,p?=^ .2.2.3 s -e或!,4-> f g raeeeeeeee!: *ee aia€2i c = p b =。=; e- .. i u o^= uo g,!5.8:CN!o。=; “' - l xei>。= d = i cr e 3 0!3 = illf!!:' - j;:>,r gr-grerge,l fr 5 p r 5 e fr == 3; f5'; ; 5 V:Seee
摘要背景:关于缺氧性脑损伤中汽车改变的流行以及与患者的结局的关联知之甚少。我们旨在调查通过有针对性温度管理及其与结果关联的心脏骤停幸存者中的汽车。方法:对前瞻性收集的数据的回顾性分析。纳入标准:通过靶向温度管理治疗(TTM)治疗的成人心脏骤停幸存者。排除标准:创伤;败血症,醉酒;急性颅内疾病;超亚波血管疾病的史;严重的血液动力学不稳定;心输出机械支持;动脉二氧化碳部分压(PACO 2)> 60 mmHg;心律不齐;缺乏声学窗口。在体温过低(HT)期间,通过经颅多普勒(TCD)和在Normothermia(NT)期间评估一次脑动脉流量(FV)。FV和血压(BP),并计算了MXA(MATLAB)。MXA是FV和BP之间的Pearson相关系数。mxa> 0.3定义的更改的汽车。在医院出院时评估了生存。CA定义不利的神经系统效果(UO)3个月后,评估了3-5个评估的脑性能类别(CPC)。 结果:我们包括50名患者(2015年1月– DEC 2018)。 所有患者患有院外心脏骤停,有24例(48%)具有最初的令人震惊的节奏。 自发循环返回的时间为20 [10-35]。 ht(核心体温33.7 [33.2–34]°C)持续24 [23-28] H,然后重新加热和NT(核心体温:36.9 [36.6-37.4]°C)。脑性能类别(CPC)。结果:我们包括50名患者(2015年1月– DEC 2018)。所有患者患有院外心脏骤停,有24例(48%)具有最初的令人震惊的节奏。自发循环返回的时间为20 [10-35]。ht(核心体温33.7 [33.2–34]°C)持续24 [23-28] H,然后重新加热和NT(核心体温:36.9 [36.6-37.4]°C)。三十一名(62%)患者在出院时没有生存,有36名(72%)患有UO。MXA低于NT期间(0.33 [0.11-0.58],而0.58 [0.30-0.83]; P = 0.03)。在HT期间,MXA在结果组之间没有差异。NT,MXA的UO患者高于其他患者(0.63 [0.43-0.83] vs. 0.31 [ - 0.01-0.67]; p = 0.03)。MXA在NT时的CPC值之间有所不同(p = 0.03)。具体来说,CPC 2组的MXA低于CPC 3和5组。在多变量分析中,初始不可震动的节奏,NT期间的高MXA和高度恶性的脑电图模式(HMP)与院内死亡率有关; NT和HMP期间的高MXA与UO相关。结论:TTM治疗的心脏骤停幸存者经常改变汽车。在Normothermia期间改变的汽车与不良预后独立相关。关键字:艾哥后脑损伤,神经系统损伤,温度管理
+“ _7 |至7; to;ānefor Ru71 | v -11ou] vow; - ; U”´U | m | v = suster̆患者őm-l; 7 +“ mryg; bm | o | _;; ting; -u1_b | 1 | 1 | 1 | 1 | 1 | M;;ѵo = r7- |; -0- |;-0ѵ
********问题:P10_22 **************** ****** 主电路从这里开始************** IBIAS VG23 0 DC 100uAdc RSIG VSIG VG1 20k TC=0,0 VS VSIG 0 AC 10m +SIN 0.58 2m 1k 0 0 0 V1 VDD 0 1.8Vdc M1 VO VG1 0 0 NMOS0P18 + L=0.4u + W=5u + M=1 M2 VO VG23 VDD VDD PMOS0P18 + L=0.4u + W=5u + M=1 M3 VG23 VG23 VDD VDD PMOS0P18 + L=0.4u + W=5u + M=1 CGS 0 VG1 17.5f CGD VO VG1 3.2f ******* 主电路从这里结束*************** ***************** PMOS 模型从这里开始 ******************************* .model PMOS0P18 PMOS(Level=1 VTO=-0.4 GAMMA=0.3 PHI=0.8 + LD=0 WD=0 UO=118 LAMBDA=0.2 TOX=4.08E-9 PB=0.9 CJ=1E-3 + CJSW=2.04E-10 MJ=0.45 MJSW=0.29 CGDO=3.43E-10 JS=4.0E-7 CGBO=3.5E-10 + CGSO=3.43E-10) ***************** PMOS 模型从这里结束 ***************************************** ***************** NMOS 模型从这里开始 ****************************** .model NMOS0P18 NMOS(Level=1 VTO=0.4 GAMMA=0.3 PHI=0.84 + LD=0 WD=0 UO=473 LAMBDA=0.2 TOX=4.08E-9 PB=0.9 CJ=1.6E-3 + CJSW=2.04E-10 MJ=0.5 MJSW=0.11 CGDO=3.67E-10 JS=8.38E-6 CGBO=3.8E-10 + CGSO=3.67E-10) ***************** NMOS 模型到此结束 *****************************************
1950 年 7 月,他在 NEWPORT NEWS 号上晋升为上尉,同年 10 月返回海军部,担任海军作战部长办公室作战发展部队联络官,直至 1951 年 6 月。随后,他被派往华盛顿特区的国防部长办公室,担任国家安全委员会参谋部的国防助理,并被指派到助理国防部长弗兰克·C·纳什的办公室,直至 1953 年 7 月。1953 年 8 月,他接管了 USS POCONO (AGC-16) 号驱逐舰的指挥权,该舰是大西洋舰队两栖部队指挥官的旗舰。
********问题:P7_31 **************** ****** 主电路从这里开始************** M1 VD VG 0 0 NMOS0P18 + L=0.5u + W=12u + M=1 V2 VDD 0 1Vdc I1 VDD VD DC 200u R1 VG VD 22MEG TC=0,0 R2 0 VO 15k TC=0,0 C1 VD VO 1 TC=0,0 C2 VI VG 1 TC=0,0 V3 VI 0 AC 1 +SIN 0 10m 1k 0 0 0 ******* 主电路从这里结束********************************************** ***************** NMOS 模型从这里开始 ************************************* .model NMOS0P18 NMOS(Level=1 VTO=0.8 GAMMA=0.3 PHI=0.84 + LD=0 WD=0 UO=450 LAMBDA=0.05 TOX=4.08E-9 PB=0.9) ***************** NMOS 模型到此结束 *****************************************
SYSC 5104 W ELG 6114 I00 Methodologies For Discrete-Event Modeling and Simulation Wainer Carleton In- person SYSC 5108 W ELG 6118 I00 Topics in Information Systems: Deep Learning Huang Carleton On-Line SYSC 5303 W ELG 6393 I00 Interactive Networked Systems and Telemedicine Liu Carleton In- person SYSC 5304 W ELG 5127 I00 Medical成像模态ONO CARLETON-SYSC 5401 W ELG 6141 I00 CU:自适应和学习系统UO:自适应控制Schwartz Carleton In-Per-ser-sers Sysc 5407 W ELG 5137 i00计算机网络的计划和设计St.
SYSC 5104 W ELG 6114 I00 Methodologies For Discrete-Event Modeling and Simulation Wainer Carleton In- person SYSC 5108 W ELG 6118 I00 Topics in Information Systems: Deep Learning Huang Carleton TBD SYSC 5303 W ELG 6393 I00 Interactive Networked Systems and Telemedicine Liu Carleton In- person SYSC 5304 W ELG 5127 I00 Medical Imaging Modalities Ono Carleton In- person SYSC 5401 W ELG 6141 I00 CU : Adaptive & Learning Systems UO: Adaptive Control Schwartz Carleton In-person SYSC 5407 W ELG 5137 I00 Planning and Design of Computer Networks St-Hilaire Carleton In- person SYSC 5408 W ELG 7178 I00 Topics in Communications II: Cross Layer Design for Wireless Networks
SYSC 5104 W ELG 6114 I00 Methodologies For Discrete-Event Modeling and Simulation Wainer Carleton In- person SYSC 5108 W ELG 6118 I00 Topics in Information Systems: Deep Learning Huang Carleton TBD SYSC 5303 W ELG 6393 I00 Interactive Networked Systems and Telemedicine Liu Carleton In- person SYSC 5304 W ELG 5127 I00 Medical成像模态ONO CARLETON-SYSC 5401 W ELG 6141 I00 CU:自适应和学习系统UO:自适应控制Schwartz Carleton In-Per-ser-ser-sers Sysc 5407 W ELG 5137 i00 I00计算机网络的计划和设计st-Hilaire Carleton in-sysc 5408 W Eles Insullocation IN-sys Sysc in-sys in-sys inscoots II: