1. 巴斯夫公司 2. 普莱克斯 3. 亨斯迈先进材料 4. ENSTOR(海湾天然气存储) 5. 奥林公司 6. 泰特莱尔 7. 普莱克斯 8. 美国胺类公司 9. 阿科玛 10. 诺力昂 11. 兰精纤维公司 12. FMC 公司 13. AMVAC 化学公司 14. 壳牌化学公司 15. Matheson Tri-gas 16. Southern Ionics 17. Mobile Rosin Oil Co. 18. Occidental 19. 霍尼韦尔 UOP 20. 凯米拉 21. 三菱多晶硅 22. 普莱克斯 23. 赢创 24. INEOS 苯酚 25. 巴斯夫 26. 巴斯夫农业解决方案 27. W&T Offshore 28. Harcros Chemical 29. Millard Maritime 30. Core Industries 31. APM 终端
学院 硕士和文学硕士招生 硕士和文学硕士课程 经济援助 奖学金计划 座位预订 谁可以申请?联系谁? 最低资格要求 COAP(通用录取接受门户) 如何申请? 录取程序 支付入学费和退款政策 费用和押金详情 硕士和文学硕士课程亮点 航空航天工程系 应用力学系 生物技术系 化学工程系 化学系 土木工程系 计算机科学与工程系 数据科学与人工智能系 电气工程系 人文与社会科学系 数学系 机械工程系 冶金与材料工程系 海洋工程系 物理学系 用户导向课程(UOP) 学生便利设施 研究设施 重要日期(GATE 合格考生和 IIT 毕业生,针对赞助和其他类别的考生)
我们各业务部门表现强劲 2021 年是 BSI 财务表现卓越的一年,无论是收入增长还是盈利能力,这都使我们能够进一步加强资产负债表。我们集团报告收入增长 9%,至 5.856 亿英镑。按固定汇率计算,基础收入增长了 13%。集团基础营业利润 (UOP) 为 8,310 万英镑,比 2020 年增长了 30%。收入的增长表明业务的真正发展势头——在每个业务部门和每个地区都是如此。然而,我们知道,我们盈利能力的大幅提高在一定程度上要归功于持续的 COVID-19 限制,这限制了我们的旅行能力并促进了我们服务的远程交付,同时抑制了我们快速投资业务的能力。我们强劲的财务表现现在为我们提供了长期投资 BSI 的机会,无论是在构建我们企业范围的能力以支持我们的增长目标方面,还是在进一步投资于我们的数字基础设施和能力方面,这些对于我们未来的成功至关重要。
摘要 - 在本文中,我们考虑了启用双向物联网(IoT)通信系统的光线(LIFI),分别在下行链路和上行链路中使用可见光和红外光线。为了有效地提高双向Lifi iot系统的能量效率(EE),具有服务质量(QoS)的非正交多重访问(NOMA) - 保证最佳功率分配(OPA)策略可用于最大程度地提高downlink和Uplink chan-nink-chan-nells的EE。我们根据下行链路和上行链路通道中最佳解码顺序的识别得出封闭形式的OPA集,这可以实现低复杂功率分配。此外,我们通过共同考虑用户的频道增益和QoS要求,提出了一种自适应渠道和基于QoS的用户配对方法。我们进一步分析了双向Lifi iot系统中下行链路和上行链路通道的EE和用户停电概率(UOP)性能。广泛的分析和仿真结果表明,与正交多重访问(OMA)和NOMA相比,NOMA具有OPA的优势,并具有典型的基于信道的功率分配策略。还表明,所提出的自适应渠道和基于QoS的用户配对方法极大地超过了基于频道/QoS的方法,尤其是当用户具有不同的QoS要求时。
94 2024-25 CP00001403 13.06.2024 SR/FST/COLLECEL/COLLACE/2023/1454/C 04.06.2024 IFD/C/I/300524/35/35/00719 30.05.2024分配5250000 suchita lokhande n/a sanaataana colacha n/a sanataana narma sanataana sanataana sanataana sanataana 604666666244完成95 2024-25 CP00001404 13.06.2024 SR/FST/ET-I/2023/2023/1170/C 05.06.2024 IFD/C/I/040624/040624/35/00743 04.043 04.06.2024 Mayank Srak Srak Srak Srak Srak Srank Srank Srank Srank n5500000 trast Srank n5500000 turist turif 60421093682 Done 96 2024-25 CP00001405 13.06.2024 SR/FST/COLLEGE/2023/1454/G 04.06.2024 IFD/C/I/300524/31/00720 30.05.2024 Assignment 150000 Dr. Suchita Lokhande N/A Sanatana Dharma College sdvsala 60466636244 Done 97 2024-25 CP00001406 13.06.2024 SR/FST/MS-I/2023/133/C 04.06.2024 IFD/C/I/040624/35/00746 04.06.2024 Assignment 5600000 Dr. Mayank Srivastava N/A Central University of South Bihar CUBP 60437029798 Done 98 2024-25 CP00001407 13.06.2024 SR/FST/MS-I/2023/129/C 04.06.2024 IFD/C/I/040624/35/00749 04.06.2024 Assignment 5600000 Dr. Mayank Srivastava N/A Savitribai Phule Pune University UOP 60426682244完成
摘要在线第二语言教学近年来蓬勃发展,在技术能力和COVID-19大流行导致的教学方式的强迫变化的帮助下。这种转变强调了互动在在线教育学中的关键作用。研究表明,增加学生与讲师之间互动的机会增加对于培养第二语言获取(SLA)至关重要。但是,很少有研究量化在线语言教学中的不同类型的相互作用的产生,尤其是在经验丰富的讲师中。本研究利用互动主义框架对在线西班牙语课程中的互动进行定量分析,并根据互动启动类型进行分类:指导者提出的参与(IPP),未提出的口头参与(UOP),未提及的文本参与(UTP),即聊天(即,聊天的时间段)(即,均一次的范围)(即及时的范围),并在展示范围(ever),并在展示范围(即及格)。这些转弯)。数据包括在英国一所远程学习大学中跨越熟练的LEV ELS和课程类型的同步L2西班牙语教学的视频记录。课程类型包括语法研讨会和考试准备。结果表明,在线语言课程中的互动模式受熟练程度和课程类型的影响。较低的熟练度学生更频繁地从事互动程序,而参与扩展话语的能力取决于Spe cific活动/课程类型。这项研究有助于解决除英语(Lote)以外的LAN Guages的互动和语言教学研究的缺乏。
•在2022年10月24日,提交了提交前的会议请求。•2024年1月13日,DEQ收到了《清洁水法》第401 WQC的请求。•在2024年1月23日,USACE通知DEQ,他们正在根据标准许可证处理该项目。•DEQ合理的对该项目的审查时间已确定为2025年1月12日。•2024年9月5日,DEQ发布了401 WQC草案的公告,以供评论。DEQ收到了最终WQC中考虑的水质评论。根据申请,俄勒冈州的下一个可再生燃料(“申请人”)提议影响湿地和水域,以便在西部工业园区建造可再生燃料设施。该项目位于湿地和水域,送至麦克莱恩·斯洛(McLean Slough),麦克莱恩·斯洛(McLean Slough)是俄勒冈州哥伦比亚县克拉斯卡尼(Clatskanie)附近的克拉斯卡尼河(Clatskanie River)的支流(第16、21、21、21、21、22、23、23、27、27、27、28、33和34号,镇8n,范围4W)。项目描述:申请人提议永久影响约104.3英亩的湿地,暂时影响32.03英亩的湿地,并通过向大约164,615立方院进行挖掘,并永久影响0.87英亩的水域,并排放大约664,812个立方体,以建造材料的大约664,812立方码,以建造湿地和井井有所情况。燃料设施将包括主要工厂设施,一条新的主要通道道路,一条轨道和通道道路,四个管道,二十一个原料罐以及主要工厂设施外的施工后的雨水设施。原料范围从植物油,用过的食用油,动物牛脂和不可食用的玉米油范围。拟议的设施能够通过使用Honeywell UOP Company的Ecofining Green Diesel Technology Process每天生产50,000桶可再生柴油和航空燃料产品。原料将主要是通过驳船和船只向哥伦比亚港口西部码头港口接收的,并通过管道运送到该设施。最终的燃油产品将从西部码头运送。设施组件将通过安装大约
激子淬火。[10]研究还致力于开发带有红移排放的有机植物[5b,11],一般策略是增加结合的程度。但是,这导致水溶性不足并使合成复杂化。精确剂和动力因素由于分子的相互作用而形成较低的能级,也是获得红移发射的策略。[12] CHI和同事引入了分子间卤素键合,以提高超大的磷光效率高达52.10%。[4C] KIM和同事报告了一种通过互联体相互作用(卤素和氢键)增强磷光的策略。[4A]众所周知,室内电荷转移(ICT)可以减少单线和三重态,张和同事之间使用ICT来促进磷光的能量差距。[13] Tian和同事报告了基于宿主增强的ICT和宿主诱导的分子内旋转限制的多色发光。[14]最近,我们的小组制定了协同增强策略,以实现室温磷光(RTP),[2B,10,15],我们已经开发了多阶段组装的超分子系统,这些系统显示出通过荧光共振能量传递和型型组件,这些系统显示出红色和近红外的Emision。[16]然而,尚未报道使用宿主 - guest相互作用来调节ICT并以有效且可调的磷光形式形成动力的方法。此外,我们发现超分子引脚可用于细胞成像,尤其是线粒体中的成像。这种超分子策略在这项研究中,我们现在合成了几个新型的桥梁苯基苯基盐荧光团,并通过供体 - 受体的网状液与柔性烷基链相连。化合物1(方案1)是一个典型的示例。Using NMR spectroscopy, mass spectrometry (MS), transmission electron microscopy (TEM), and theoretical calculations, we analyzed the “molecular folding” binding of 1 and CB[8], and we found that 1 /CB[8] host–guest assemblies show the highest phosphorescence quantum yield reported to date for ultralong organic phosphorescence (UOP) materials.与参考化合物进行仔细的比较揭示了有效磷光的机械性是由于三个主要因素:第一个是非放射性衰变的较低速率,分散在富含羟基的矩阵中,CB [8]严重地封装了色彩的封装[8]和柔性链被抑制了非差异性差异;其次,有效的ICT提高了ISC的速率;最后,分子内卤素键的形成使辐射衰减的速率从t 1增加到S 0。
土耳其伊斯坦布尔,2022 年 9 月 [-] — 霍尼韦尔 (纳斯达克股票代码:HON) 今天宣布,Biotrend Energy(伊斯坦布尔证券交易所代码:BIOEN)将在 Biotrend Energy 计划在土耳其的塑料回收工厂中应用霍尼韦尔的 UpCycle 工艺技术。该工厂将把混合废塑料转化为再生聚合物原料 (RPF),从而推动塑料循环经济的发展。建成后,它将成为土耳其首个采用霍尼韦尔 UpCycle 工艺技术的商业化废塑料回收工厂。计划中的先进回收工厂预计每年能够利用霍尼韦尔的 UpCycle 工艺技术将 30,000 公吨混合废塑料转化为霍尼韦尔再生聚合物原料。霍尼韦尔 UOP 将提供相关工程和技术服务,包括工厂生命周期内的启动、调试和技术支持服务。该项目标志着霍尼韦尔与 Biotrend Energy 在土耳其先进塑料回收领域的合作正式启动,双方计划未来合作建设多个废塑料回收设施。Biotrend Energy 首席执行官 Osman Nuri Vardı 表示:“Biotrend Energy 是土耳其废物管理领域的领先企业,正在投资可持续循环经济。我完全有信心,我们将与霍尼韦尔一起引领这一领域。Biotrend Energy 在废物管理方面的经验,加上霍尼韦尔的技术,将为 Biotrend Energy 的可持续发展做出贡献。”目前,Biotrend 只能回收一小部分机械回收材料。此外,由于塑料生产过程中的污染、颜色和添加剂等因素,某些类型的塑料废物无法通过机械回收。目前,无法通过机械回收的塑料要么转化为垃圾衍生燃料 (RDF),要么被存放在垃圾填埋场。霍尼韦尔 UpCycle 工艺技术中使用的化学回收可以处理更广泛的废塑料,支持 Biotrend 增加循环材料回收量的努力。霍尼韦尔土耳其、以色列和中亚地区总裁 Uygar Doyuran 表示:“霍尼韦尔的 UpCycle 工艺技术将帮助 Biotrend Energy 应对土耳其的塑料废物问题。”土耳其将能够增加可回收塑料的范围,从而有可能取代一部分化石原料用于新塑料生产。”今天的公告扩大了 UpCycle 工艺技术的足迹,这是霍尼韦尔最近在美国、西班牙和中国发布的公告的延续。Biotrend Energy 是土耳其综合废物管理行业的先驱之一,处理 4,500 吨废物,每年,Biotrend Energy 在土耳其境内的 18 家工厂(包括获得预许可的工厂)处理 2000 吨废物。Biotrend Energy 的业务包括废物转运、回收、填埋、废物转化为能源以及生产有机肥料(堆肥)和 RDF。霍尼韦尔的 UpCycle 工艺技术是一种现成的技术,它利用行业领先的分子转化、热解和污染物管理技术将废塑料转化为 RPF,然后用于制造新塑料。UpCycle 工艺技术扩大了可回收塑料的类型,包括原本无法回收的废塑料,包括彩色、柔性、多层包装和聚苯乙烯。