摘要:我们生活在一个对交通网络需求不断增长的环境中,而交通网络的基础设施也在老化。然而,更换所有超过使用寿命的基础设施资产是不可行的。常见的替代方案是通过基于结构健康监测 (SHM) 的维护和可维护性来提高其耐用性。在众多的 SHM 方法中,数字孪生模型正受到越来越多的关注。该模型是对现实资产 (物理孪生) 的数字重建 (数字孪生),与其他数字模型不同,它使用部署在后者上的传感器网络采样的数据频繁自动更新。此工具可以为基础设施管理人员提供功能,以监控和优化他们的资产库存,并在日常运营条件和极端事件后做出明智的、基于数据的决策。这些数据不仅包括传感器数据,还包括基于频繁更新的数字孪生模型制定的定期重新验证的结构可靠性指标。该技术甚至可以推进到执行结构行为预测并自动对其进行补偿。本探索性评论涵盖了数字孪生的关键方面——其实用性、运作方式、应用等——并证明了分布式感知作为其网络传感器组件的适用性。
加泰罗尼亚技术大学 (UPC)、德国国家计量研究所 (PTB) 和德国联邦辐射防护局 (BfS) 在西班牙莫勒鲁萨空中场地进行的比对活动中,分析了 50 mm × 50 mm(直径 × 高度)NaI 和 38 mm × 38 mm CeBr 3 闪烁体以及安装在无人机系统 (UAS) 上的 1500 mm 3 CZT 半导体机载光谱探测器的响应。根据在 10 m 至 60 m 高度范围内进行的背景飞行中的光谱低能区计数率、人造计数率和环境剂量当量率,计算了指示存在人工放射性的判定阈值。比较了不同机载系统在不同飞行高度探测和确定 345 MBq 137 Cs 点源活度的能力。最后,机载系统展示了通过在 10 m、20 m 和 40 m 高度平行飞行来定位 137 Cs 点源的能力。
特性和优点 ▪ 低噪声模拟信号路径 ▪ 通过新的 FILTER 引脚设置器件带宽 ▪ 响应阶跃输入电流,输出上升时间为 5 μs ▪ 带宽 80 kHz ▪ 总输出误差 1.5%(TA = 25°C) ▪ 小尺寸、扁平 SOIC8 封装 ▪ 1.2 mΩ 内部导体电阻 ▪ 从引脚 1-4 到引脚 5-8 的最小隔离电压为 2.1 kVRMS ▪ 5.0 V,单电源供电 ▪ 66 至 185 mV/A 输出灵敏度 ▪ 输出电压与交流或直流电流成比例 ▪ 工厂调整精度 ▪ 极其稳定的输出失调电压 ▪ 几乎为零的磁滞 ▪ 与电源电压成比例输出
考虑到预期的空中交通增长,创新和开发能够更高效、更安全地管理飞机运营的新工具对于实现未来的期望是必不可少的。在这种情况下,能够准确预测飞机轨迹以确保高效的飞机运营(例如,航班规划和调度、飞行轨迹预测等)以及使空中交通管理 (ATM) 系统更加强大(包括地面 ATC 系统、预测 ATC 部门的需求等)非常重要。预测它们的方法是基于飞机性能模型 (APM),即允许根据取决于执行飞行的飞机的一些特定系数对飞机性能进行建模的方程组。因此,预测轨迹的准确性将直接取决于所使用的飞机性能模型。如果 APM 不能反映现实,则预测轨迹将不够准确。此外,由于这些轨迹不再符合实际性能模型的最佳性能,因此飞机运营的成本效益和环境影响将降低。因此,需要尽可能真实地使用飞机性能模型。本硕士论文的目标是设计一种算法,该算法能够估计描述所考虑的飞机性能模型的函数系数,该算法将是
( h t t p : // w w w . t d x . c a t / ) ha estat autoritzada pels titles dels drets de propietat intel·lectual únicament per a usos privats emmarcats en activitats d’investigació i docència.服务复制和服务扩散的最终结果是不属于 TDX 的 UPCommons 服务配置的。没有 s'autoritza la Presentació del seu contingut en una Excellentra o marc aliè a UPCommons(框架)。 Aquesta reserva de drets afecta tant al resum depresentació de la tesi com als seus continguts。 En la utilització cita de parts de la tesi és obligat indicar el nom de la persona autora.
开发的 CPDLC 代码与欧洲空中交通安全组织提供的 ATM(空中交通管理)模拟程序“eDEP”集成,也与 Icarus 集团研究模拟集成。该项目分为两个主要部分:a) 编码库消息。已努力收集 ATC 和飞行员之间可以交换的所有可能消息。消息已编码为字节级,并已准备好通过网络发送。b) 程序图形开发。已开发出一个友好且易于理解的图形环境,以便能够与计算机交互以正确的方式发送消息。作为长期目标,预计 CPDLC 程序可以在 ATM 模拟中由真实的空中交通管制员评估,其中 RPAS 和常规航空在非隔离空域中混合。TFG 将有助于得出有关 CPDLC 提供的好处的结论,并了解 CPDLC 系统为空中交通管制员提供的实际工作量。
1.1. 简介 ................................................................................................................................... 5
摘要/总结 摘要:本硕士论文旨在开发一种优化空客飞机水平稳定器几何形状的方法。飞行认证对稳定性和控制提出了一系列要求,任何飞机都必须遵守这些要求。稳定器的梯形平面形状和面积受到这些要求的限制,因为它们对飞机的操纵品质有着至关重要的影响。优化包括找到设计空间中最好的稳定器,使飞机能够通过认证。为了在不实际驾驶飞机的情况下进行这种优化,我们使用了空客工具 E‐Motion,它可以模拟操纵质量标准,输出测试稳定器的可行性。最小化的目标函数是稳定器的重量和阻力的组合。使用空中客车初步设计工具 EP-EH 来评估此目标。该方法的实施是通过模拟工具 I-Sight 进行的,该工具为工程师提供了一组可根据需要选择的采样、近似和优化方法。本报告介绍了该方法在空中客车 A380 特定情况下的构造和结果。A380 的 HTP 理论上可实现的重量和阻力减少分别为 115Kg(1.9%)和 0.58 阻力数(8.4%)。摘要:本项目最后介绍了空中客车飞机水平安装几何优化方法的开发过程。Ensayos en vuelo imponen un conjunto de requerimientos sobre la estabilidad y el control que los aviones tienen que cumplir.梯形植物形状和稳定位置需要根据需要进行限制,否则会影响到 los aviones 的热量。优化了巴士的最佳设置空间,以允许航空认证。实现航空领域的实际优化,利用空客、E-Motion、风量计算标准、以及稳定概率的事实。将目标最小化功能与比索和航空抵抗力结合起来。Otra herramienta de Airbus,EP-EH esta utilizada para evaluar este criterio。纪念空客 A380 的构造和结果。该方法的实现是通过I-Sight仿真工具完成的,该工具为工程师提供了一套采样、近似和优化方法,工程师可以根据需要进行选择。理论上实现的重量和阻力降低分别为 115 公斤 (1.9%) 和 0.58 阻力数 (8.4%)。
摘要/总结 摘要:本硕士论文旨在开发一种优化空客飞机水平稳定器几何形状的方法。飞行认证对稳定性和控制提出了一系列要求,任何飞机都必须遵守这些要求。稳定器的梯形平面形状和面积受到这些要求的限制,因为它们对飞机的操纵品质有着至关重要的影响。优化包括找到设计空间中最好的稳定器,使飞机能够通过认证。为了在不实际驾驶飞机的情况下进行这种优化,我们使用了空客工具 E‐Motion,它可以模拟操纵质量标准,输出测试稳定器的可行性。最小化的目标函数是稳定器的重量和阻力的组合。使用空中客车初步设计工具 EP-EH 来评估此目标。该方法的实施是通过模拟工具 I-Sight 进行的,该工具为工程师提供了一组可根据需要选择的采样、近似和优化方法。本报告介绍了该方法在空中客车 A380 特定情况下的构造和结果。A380 的 HTP 理论上可实现的重量和阻力减少分别为 115Kg(1.9%)和 0.58 阻力数(8.4%)。摘要:本项目最后介绍了空中客车飞机水平安装几何优化方法的开发过程。Ensayos en vuelo imponen un conjunto de requerimientos sobre la estabilidad y el control que los aviones tienen que cumplir.梯形植物形状和稳定位置需要根据需要进行限制,否则会影响到 los aviones 的热量。优化了巴士的最佳设置空间,以允许航空认证。实现航空领域的实际优化,利用空客、E-Motion、风量计算标准、以及稳定概率的事实。将目标最小化功能与比索和航空抵抗力结合起来。Otra herramienta de Airbus,EP-EH esta utilizada para evaluar este criterio。纪念空客 A380 的构造和结果。该方法的实现是通过I-Sight仿真工具完成的,该工具为工程师提供了一套采样、近似和优化方法,工程师可以根据需要进行选择。理论上实现的重量和阻力减少量分别为115Kg(1.9%)和0.58阻力数(8.4%)。
图 1:ICARUS 研究组.................................................................................................................10 图 2:ICARUS 研究组目标....................................................................................................10 图 3:EDEP 流量查看器屏幕截图...............................................................................................11 图 4:新 Java 项目.......................................................................................................................12 图 5:项目资源管理器.......................................................................................................................13 图 6:显示不正确执行的控制台.........................................................................................................13 图 7:显示正确执行的控制台.........................................................................................................13 图 8:OSI 参考模型....................................................................................................................14 图 9:通信网络应用层....................................................................................................................16 图 10:搜索和救援行动....................................................................................................................17 图 11:TADIL-Js 消息目录.....................................................................................................18 图 12:AP04 消息目录.....................................................................................................