摘要。在当前的能源背景下,间歇性和非调度性可再生能源,如风能和太阳能光伏(发电量不一定与需求相对应),需要灵活的解决方案来储存能源。储能系统 (ESS) 能够平衡可变可再生能源 (VRE) 的间歇性和不稳定发电量。ESS 提供辅助服务,例如:电网频率、一次和电压控制。为了实现电力系统控制,ESS 可以在几秒钟内切换到不同的运行模式。很多时候,ESS 会对景观和社会产生环境影响。为了解决这个问题,废弃的地下空间,如已关闭的矿井,可以用作储能厂的地下水库。本文对地下抽水蓄能水电 (UPSH)、压缩空气储能 (CAES) 和废弃矿井中悬挂重物的悬挂重物重力储能 (SWGES) 进行了比较分析。抽水蓄能水电 (PSH) 是最成熟的概念,占全球散装储能容量的 99%。结果表明,在 UPSH 和 CAES 电厂中,储存的能量主要取决于地下储层容量,而在 SWGES 电厂中,储存的能量取决于矿井深度和质量。SWGES 电厂储存的能量(3.81 MWh 循环 -1,可用深度 600 米,假设悬浮重量为 3,000 吨)远低于 UPSH 和 CAES 电厂。
在过去的几年中,欧盟的使用化石燃料(煤炭,燃料和天然气)在欧盟中降低了电力,涉及温室气体排放的显着减少。全球气候目标将是在2050年达到零排放,而CO 2排放的最后一部分的减少可能来自可再生能源,绿色氢和基于可再生的电力。在当前向可持续经济的能源过渡中,需要大规模的储能系统来增加间歇性可再生能源的整合,例如风和太阳能光伏。使用废弃地下空间对环境影响较低的地下储能系统可能是在欧洲电网网格中提供辅助服务的替代方法。在本期特刊中,将地下泵存储水电,压缩空气存储和氢能存储系统的进步作为有希望的解决方案,以解决可变可再生能源引起的间歇性问题。如今,抽水储存水力发电(PSH)是最成熟的大规模存储技术。PHS系统是用于为电网提供电力存储服务的主要技术,占安装全球存储容量的161 GW。PHS需要加倍,在2050年达到325 GW。PSH系统由两个在不同高度的水库组成。存储的能量取决于水的质量和上层和下储层之间的净液压头。往返的能量效率在0.7-0.8之间。Menendez等。系统地形局限性侵蚀区域和环境影响目前阻碍了世界各地这些系统的发展。相反,废弃的地下空间可以促进地下泵送的水电(UPSH)系统的安装,那里至少一个水库在地下。[1]分析了UPSH植物在封闭矿山中提供辅助服务的经济可行性。考虑了下部储层的两种不同选择:(i)利用当前的采矿基础设施,以及(ii)挖掘新的隧道网络。二级法规,偏差管理和第三级法规服务考虑在4-10 h之间的全部负载下每天的涡轮机周期时间来优化经济结果。的投资成本为366 m€。最后,估计内部回报率为7.10%,将参与伊比利亚辅助服务市场,考虑到涡轮机周期时间为8小时。由于投资成本很高,每当必须钻取新的水库时,就会降低利用能力。UPSH植物的可行性研究还必须包括地质机械和水力地质方面。Menendez等。[2]研究了封闭煤矿中地下水库的地质力学性能。砂岩和页岩岩质量被认为是岩石块,可以用30 m 2和200 m长的横截面挖掘隧道网络。进行了三维数值模型,以分析发掘周围塑料带的变形和厚度。
在瞬态能源背景下,风能或太阳能光伏等可变可再生能源在电力结构中的渗透率不断提高,需要灵活的能源存储系统来平衡供需。大量电力可以利用地下空间储存,对环境的影响较小。为此,可以在废弃或新建的地下结构中开发地下抽水蓄能水电 (UPSH)、压缩空气储能 (CAES)、氢能储能 (HES)、地下热能储能 (UTES) 或重力储能 (GES) 系统。本期特刊将讨论机械设计、地下基础设施的地质力学分析、热力学性能、地质和水文地质、公众接受度、环境影响、运营模式、电力市场、法律监管、往返能源效率和地下储能厂的经济可行性。 - 储能 - 地下抽水蓄能水电 - 压缩空气储能 - 重力储能 - 氢能储能 - 地下热能储能