本课程提供了对机器学习的方法论,理论和实用介绍。Topics covered: - Learning problems: estimation, prediction, classification, regression - Pipeline: Experiment design, data collection and processing - Data analysis: generalisation, model selection, testing and simulation - Principles: loss minimisation, Bayesian inference - Algorithms: stochastic gradient descent - Models: nearest neighbours, neural networks, graphical models - Applications: healthcare, image processing, text prediction/generation - Python:熊猫,numpy,,matplotlib,scikitlearn,statsmodels
4. 所有考试都在 TopHat 上进行。5. 重新评分政策:您有责任确保您的成绩反映您已获得的分数,并且您的测验分数已正确添加。如果您发现错误,请立即联系我。如果您对您的奖学金提案或演示文稿的评分方式有异议,请提交一份表格,解释您应获得更多分数的原因。重新评分申请应在向您提供成绩后的一周内提交。6. 奖学金提案应以电子文件的形式直接提交到 Google Drive 文件夹,最迟在截止日期后的第二天提交。逾期提交的惩罚:每天 10% 的作业分数。7. 带回家的项目将重点关注您对植物基因组的理解。您将如何获得有关特定植物基因的信息?这种基因在植物中的表达模式是什么?如果您想克隆这种基因以在细菌中表达,您的方法是什么?它是植物中必需的基因吗?你能在植物中创建这种基因的敲除系吗?你将如何使用 CRISPR-Cas9 来实现这一点?最后,你对这个基因或基因集的总体兴趣是什么。该项目可以与即将到期的奖学金提案相关联(待定)。
考试将是一项封闭式考试。考试期间不允许文档和连接的设备(即与Internet无连接)。考试需要一台笔记本电脑,以及用于运行统计分析的软件程序,例如R,Stata或SPSS。在违反这些规则的情况下,学生处于欺诈情况,未经授权的情况将被删除。考试可以被视为失败。
本课程的主要目的是学习参与自主机器人和/或智能代理的设计和操作的理论和实验基础。介绍性讨论涵盖了机器人感知,计划和控制的子主题。其他主要主题包括机器人零件设计,感官集成,运动运动学,仿真测试(ROS/ROS2),未建模的环境/社会因素以及现场部署方面。除了标准的地面机器人系统外,我们还将涵盖水下机器人技术和空中机器人技术的类似主题和设计选择。本课程的所有材料和家庭作业都是根据现代机器人技术广泛接受的实践开发的。本课程的预期副作用是增强您的专业知识:
GE8152 - 工程图形学 C106.1 了解工程图形学的基础知识和标准 C106.2 徒手绘制基本几何结构和物体的多种视图 C106.3 了解线和平面正交投影的概念 C106.4 绘制立体截面投影和曲面展开 C106.5 可视化和投影简单立体的等距和透视截面 GE8161 - 问题解决和 Python 编程实验室 C107.1 了解如何编写、测试和调试简单的 Python 程序。C107.2 描述带有条件和循环的 Python 程序。C107.3 通过定义和调用函数逐步实现 Python 程序。C107.4 使用 Python 列表、元组和字典表示复合数据。C107.5 在 Python 中实现从文件读取数据/向文件写入数据。
课程以业务分析(决策过程,系统和模型)中使用的主要概念的概述开始。本课程的第一部分强调了决策的定量方法。决策分析中使用的主要模型(影响图,决策树)在两种情况下都呈现 - 没有概率和概率,以及两个决策分析:风险分析和灵敏度分析。还描述了用于多准则决策问题(作为分析层次结构过程)的几种模型。该课程的第二部分深入分析业务分析中最著名和最应用的定量模型之一:线性编程(主题 - 最佳解决方案,灵敏度分析,二进制变量,案例应用,构成营销,财务,运输,网络分布,网络分布,游戏理论,项目计划,项目计划)。
(学分:理论3)(教学时间 - 4)课程目标:了解微生物学的基础知识并了解环境中的作用。提供对微生物世界,微生物的基本结构和功能,代谢,营养,其多样性,生理学以及与环境和人类健康的关系的基本理解。具有隔离和操纵条件的实用技能。确保学生了解微生物的结构和功能。单元 - I(10小时)微生物多样性:微生物学,历史和微生物学范围,一般特征和分类的古细菌,细菌,真菌,藻类,原生动物,病毒,病毒和王室的基础。原核生物和真核生物之间的差异。单位II(15小时)细菌的超微结构:细胞结构 - 细菌及其生物合成的细胞壁,细胞包膜 - 胶囊和粘液层,细胞附加物 - pili,鞭毛,鞭毛和脂肪,细胞膜,细胞膜,包含体,质粒DNA和质子DNA和染色体和染色体DNA。细菌遗传学 - 结合,转导(广义和专业化)和转化。单位-V(10小时)微生物控制:灭菌,消毒,反杂质,熏蒸。物理控制:温度(潮湿的热量,高压灭菌,干热,热空气烤箱和焚化炉),干燥,渗透压,辐射,紫外线,电力,超声波,超声波波,过滤。化学控制:防腐剂和消毒剂(卤素,酒精,气态灭菌)课程学习结果(CLO):学生将能够1。2。单元-III(15小时)显微镜:染色 - 染色(简单和微分)显微镜的原理和类型 - 光学显微镜(明亮场,暗场,相位对比,荧光显微镜)和电子显微镜的原理,原理和申请营养类型,培养基类型的制备,微生物的培养,微生物生长曲线,病毒复制:裂解和裂解性周期,微生物的隔离,保存和维持微生物,有氧和厌氧的细菌培养,生物效应以及生物因素的作用以及生物因素对生长的生长。定义了微生物学的科学,其发展和在人类福利中的重要性。描述自发产生的历史概念以及执行
开发工程师为实用应用所需的矩阵代数技术。查找本征值和本征媒介并使用线性转换解决问题在更高维度中学习微积分的重要工具。熟悉几个变量的功能,这些函数可用于优化。熟悉两个和三个维度的几个变量功能的双重和三个积分。单位-I:矩阵矩阵的矩阵等级,由echelon形式,正常形式。cauchy –binet公式(无证明)。线性方程式的高斯 - jordan方法系统的非奇异矩阵倒数:通过高斯消除方法的均质和非均匀方程的求解系统,高斯·塞德尔迭代方法。单位-II:线性变换和正交转换:特征值,特征媒介及其特性(无证据证明),基质的对角线化,Cayley-汉密尔顿定理(没有证明),cayley-hamilton Theorem,quadratic of quadrations of quadrations of quadrations of quadration fore the quadrations fore the quadrations的逆和力量的逆和力正交转换单元-III:微积分平均值定理:Rolle的定理,Lagrange的平均值定理,其几何解释,Cauchy的平均值定理,Taylor's和Maclaurin定理以及剩余(无证据),问题和上述定理的剩余(无证据)。单位-IV:部分分化和应用(多变量微积分)
1. 口试和笔试(定期和突击考试) 2. 闭卷和开卷考试 3. 问题解决练习 4. 实践作业和实验报告 5. 实践技能观察 6. 个人和小组项目报告 7. 使用研讨会演示进行有效交付 8. 口头面试 9. 计算机化自适应测试、文献调查和评估 10. 个人和协作工作的同行和自我评估输出