随着国防部 (DoD) 在未来 25 年(2007 年至 2032 年)开发和使用日益复杂的无人系统部队,技术人员、采购官员和作战规划人员需要制定一个清晰、协调的无人系统技术发展和过渡计划。随着本文件的发布,UAS、UGV 和 UMS(定义为无人水下航行器 (UUV) 和无人水面航行器 (USV))的单独路线图和总体规划已被纳入全面的国防部无人系统路线图中。这份综合无人系统路线图是未来优先考虑和资助这些系统开发和技术的计划,从而确保国防部投资的有效回报。根据战略规划指导 (SPG),其总体目标是指导军事部门和国防机构以逻辑和系统的方式将适用的任务能力迁移到这一新型军事工具上。本路线图重点介绍了各种无人系统在技术和操作上支持的最紧迫的任务需求。在优先考虑未来无人系统技术的研究、开发和采购时,应考虑以下列出的这些需求,以确保国防部的投资获得有效回报。
摘要自动移动机器人(AMR)之间的合作,包括无人驾驶汽车(UAV),无人接地车辆(UGV)和/或无人的地表车辆(USV),可以显着增强其功能,使它们能够解决超出个人机器人的更复杂的任务。但是,为了充分利用这种合作,对所交换信息的综合理解(以语义互操作性为止)至关重要。实现这些机器人之间的语义互操作性需要深入了解相关信息及其基本结构。为了应对这一挑战,本文介绍了专门为AMR开发的平台和与技术无关的信息模型。该模型旨在通过确保语义互操作能力的方式构建信息来促进协作。本文概述了模型的开发过程,从相关科学文献的信息结构化结构化开始,从而产生了代表AMR域内知识和语义的基础框架。通过涉及多个AMR的用例证明了信息模型的实际应用。此外,本文还提供了有关所采用方法论的见解,强调了系统文献评论的重要性,并与从业人员合作以完善和验证模型。它还讨论了理论和实际含义,解决了研究过程中遇到的潜在局限性。
ix。r eferences [1]“海军3.0 evo- ePropulsofion舷外马达”,露营车和海洋有限公司。https://camperandmarine.com/products/navy-3-0--0--3kw?srsltid = afmboopo1zcp9px_m8888tjbakpzp o_w5tkxgqqlgdxnrxnrxnrxqeiaia1qibbrzg ePropulsion。https://www.epropulsion.com/e-series-batteries/ [3] R. Blake和H. Wilson,“双筒望远镜”,Vision Research(牛津),第1卷。51,否。7,pp。754–770,2011,doi:10.1016/j.visres.2010.10.009。[4] Z. Yin,X。Ren,Y。du,F。Yuan,X。He和F. Yang,“基于定时校正的双眼相机校准”,Applied Optics(2004),第1卷。61,否。6,pp。1475–1481,2022,doi:10.1364/ao.450271。[5] L. Cao,“改进了USV快速路径计划的遗传算法”,MIPPR 2015:遥感图像处理,地理信息系统和其他应用程序,Bellingham:Spie:2015,pp。981529-981529–6。doi:10.1117/12.2210736。[6] NAVTECHGPS,“ R632 GNSS接收器 - NAVTECHGPS”,NAVTECHGPS,5月4日,2022年。https://www.nav.navtechgps.com/r632-gnss-com/r632-gnss-receiver/ [7] 2021. https://www.navtechgps.com/hemisphere_a25_gn ss_antenna/ [8] “MN4014 Navigator Type UAV Multi-Motor KV400_Navigator Type_Motors_Multi-rotor UAV Power_T-MOTOR Official Store-Multi- rotor UAV,Fixed Wing,VTOL,FPV and Robot Power.” https://store.tmotor.com/product/mn4014-kv400-motor-navigator-type.html [9]“ X650套件”,Holybro Store。https://holybro.com/products/x650-
技术领域:战场采购计划:海军造船厂、舰队战备中心 (FRC)、海军陆战队后勤司令部 (MARCORLOGCOM) 目标:全球天气和地缘政治气候的波动正在增加自然和人为灾难的频率和强度。对受灾地区做出快速反应对于拯救生命至关重要,因为灾难的直接后果对幸存者和急救人员构成了最大的风险。废墟和基础设施被毁造成的高度动态环境对将物资运入灾区和将幸存者运出灾区提出了重大挑战。海军和海军陆战队寻求开发和演示快速、分布式、按需制造的无人系统,该系统能够根据情况支持多种有效载荷。描述:海军部 (DON) 寻求开发和演示快速、分布式、按需、小规模、国内制造的无人系统,该系统能够根据情况支持多种有效载荷。DON 打算与创新型小型企业合作,开发与以下重点领域相关的技术和方法:1.无人系统 (UxS) 产品的敏捷制造按需解决方案 2.无人平台的控制系统,包括第 1 组 - 无人机系统 (UAS) 或将载人船只改装为无人水面航行器 (USV) 3.基于使用商用现货 (COTS) 技术的概念有效载荷概念 1.UxS 产品的敏捷制造按需解决方案:定义和开发可定制的系统,能够在接近需求点的地方进行制造。这包括访问跨多个设施的组件和组件制造,以满足激增的需求。这包括快速本地 UxS 组装所需的供应链认证和管理。2.无人平台控制系统包括第 1 组 – UAS 或 USV:开发可重构控制系统,展示自群集组织和重新分配、避免自相碰撞和基于航路点的导航能力。这些系统必须能够快速定制,以便在紧急情况下将任何可用资产转换为 UxS 并加以使用。3.基于使用 COTS 技术的概念有效载荷概念:展示快速获取和配置模块化有效载荷的能力,以便在人道主义援助和救灾 (HADR) 行动中快速响应。1].所需能力包括通信、改进的态势感知、供应交付和受害者救援。第一阶段:请将您提议的主要重点领域编号作为第一阶段提案标题的前缀。提案人将开发并演示一个初始功能原型,该原型至少符合本主题下列出的三个重点领域中的一个主要重点领域。但是,提案人可以选择在提案提交中包含次要重点领域。技术提案限制为 5 页,并且必须提供足够的信息以进行评估,以确保第一阶段结束时演示的初始原型将在相关环境中以满足指定能力的方式运行。此信息可能包括但不限于详细设计、组件和系统实验室测试或最小可行产品 (MVP) [参考。理想情况下,技术就绪水平 (TRL) [参考。2] 在第一阶段开始时将达到 TRL 4-5,而在第一阶段完成时功能原型将达到或接近 TRL 6。在第一阶段结束时,将演示初始功能原型,
•反对马林战(ASW)(拖曳的身体传感器,自动驾驶汽车和ASW鱼雷管)•卸货索雷诱饵•矿山柜台(MCM)(MCM)(自动驾驶汽车和对潜水手术的支持,对固定空气供应的潜水操作) Warfare (ASuW) (advanced missile systems such as the RBS15 from SAAB to be accommodated in our containers/modules) • Humanitarian Assistance and Disaster Relief (HADR) (advanced medical facilities, reverse osmosis water treatment plant and electrical generation plant can be accommodated in our modules) • Special Forces (SF) support (SF mission planning and Command and Control capability can be securely accommodated in our modules) • Maritime Interdiction Operations (MIO) and Resource and Border Protection Operations (RBPO) (the Cube system can provide stowage and launch and recovery systems for additional boats in addition to modular accommodation for boarding parties and other government agency staff) • Sea Mine Laying module that consists of a container-based minelaying module and one or more storage modules • Research Support modules for for inspection, surveillance and repair of subsea installations • Launch and Recovery module for ROV´s,无人机(UAV),USV,AUV,UUV和MINI-SUBS
美国在其国防战略中面临关键时刻。从乌克兰到南中国海的现代高强度冲突,强调了迫切需要可扩展,吸引力和技术先进的未蛋白系统。为了确保民主并阻止侵略性,我们必须开发一个能够应对21世纪威胁的未经骚扰的阿森纳。为什么我们需要像中国这样的未蛋的阿森纳战略竞争对手以使美国及其盟友处于严重劣势的速度上建立军事资产。多个未分类的战争游戏和现实世界的冲突表明,现代战争迅速消耗了弹药,无人机和其他平台。没有足够的生产能力,供应链或收购改革,美国的风险被超越和没有准备。从美国第二次世界大战的“民主阿森纳”中汲取灵感,我们必须复制相同的工业动员以应对当今的挑战。飞机,坦克和弹药的迅速生产证明,政府与工业之间的合作可以果断地改变历史的进程。今天,重点必须放在未拧紧的系统上:未拧干的飞机系统(UAS或无人机),未拔水的水下车辆(UUV),未拧干的地面车辆(USV)和未拧干的地面车辆(UGVS)。我们如何到达那里:关键建议
Call for Papers IEEE Transactions on AES (TAES) Special Section Special Section on “Sensor Fusion in Autonomous Systems” Autonomous vehicles used in modern civilian and military applications gather and process multi-modal data gathered from a variety of sensors – cameras, radars, lidars, and ultrasonic transducers – for a variety of applications such as intelligent transportation systems, urban planning, agriculture, remote sensing, and security and 监视。本期特刊的重点是在理论分析,信号处理,机器学习,现象学,原型开发以及多模式传感器数据收集和处理的数据生成中的原始研究。将特别强调传感器校准误差的技术,尤其是当应用于包括无人驾驶汽车(UAV)无人机和无人驾驶表面车辆(USV)平台的分布式传感平台时。我们征求学术,研究和工业贡献。我们鼓励有关新算法,理论研究,标准和新颖的评估指标的贡献,用于分析性能,调查,软件和硬件实验原型,公共数据集和基准测试。尽管在TAE和其他社区中,诸如雷达,电气和红外(EO/ir)和声学等特定模式已经进行了广泛的工作和政府。该特殊部分旨在将来自学术界,政府和行业的各种相关子学科的研究人员汇集在一起,以介绍传感器融合的最新进展,以应用商业和国防领域的应用。
摘要。南洋在大气和海洋之间的碳交换中起着重要作用,并且是海洋吸收人为CO 2的关键区域。然而,由于数据覆盖率有限,南大洋航空CO 2频率的估计值高度不确定。在冬季和整个南洋的子午梯度中进行的采样可改善全球表面海洋P CO 2的机器学习(ML)重建。在这里,我们使用地球系统模型的大集合测试床(LET)和“ P CO 2-分离”重建方法来评估P CO 2重建效果的改进,可以通过添加到现有的Surface Surface Ocean Co 2 Atlas(So-Cat)的Surean Surean Surean Surean中的额外自主采样来实现,这些方法可以实现。让LET允许通过与“模型真实”进行比较,对P CO 2重建的技能进行强有力的评估。只有SOCAT采样,南大洋和全球P CO 2被高估了,因此海洋碳汇被低估了。纳入未拧紧的表面车辆(USV)采样,刺激了南大洋内观测的空间和季节性覆盖范围,从而减少了P CO 2的过度估计。与单独的采样相比,南半球冬季和整个南大洋的子午梯度的额外观察结果分别导致重建偏见和根平方方误差(RMSE)的改善分别为86%和16%。最后,通过仅社会采样显示的空气–EA CO 2频道的大型衰老变化可能部分归因于南方海洋的不足采样。
2024 年 8 月 28 日 (U) 目录: 1. (U) 范围说明 2. (U) 警告和咨询 3. (U) 摘要 4. (U) 详细信息:按地区划分的每月事件 5. (U) 附录 A:海盗和海上武装抢劫统计和趋势 6. (U) 附录 B:定义和来源 7. (U) 附录 C:有效的美国海事咨询 1. (U) 范围说明 (U) 全球航运威胁 (WTS) 报告提供过去 30 天内全球商船、航运业和其他海事利益相关者面临的威胁信息。本报告主要用于告知商船海员和海军部队。 2. (U) 警告、咨询和警报:有关有效咨询,请参阅附录 C。 3. (U) 摘要:A. (U) 哥伦比亚:8 月 28 日,一名劫匪试图在卡塔赫纳内锚地登上一艘悬挂丹麦国旗的液化石油气油轮。B. (U) 红海:截至 8 月 28 日,8 月 23 日发生的火灾仍在停泊的悬挂希腊国旗的原油油轮 SOUNION 号上持续燃烧。C. (U) 印度尼西亚:8 月 27 日,五名手无寸铁的劫匪在新加坡海峡分道通航计划 (TSS) 的东行航道上登上一艘正在航行的悬挂巴拿马国旗的散货船。D. (U) 红海:8 月 27 日,一艘悬挂科威特国旗的成品油油轮报告在也门摩卡以西约 24 海里处发现了一艘无人水面舰艇 (USV)。
缩写:6-OHDA,6-羟基果胺; ASD,自闭症谱系障碍; BTBR,Black和Tan Brachyury; Cacna1c,钙电源门控通道亚基α1c; CB1-KO,大麻素受体1敲除; CB1R,大麻素类型1受体; CNN,卷积神经网络; CNTNAP2,接触蛋白相关的蛋白质样2; CPP,条件的地方偏好; D1和D2样受体,多巴胺1和2喜欢受体; DB,分贝; DRT,多巴胺替代疗法; ECS,内源性大麻素系统; FM,频率调制; FMR1,脆弱的X精神迟缓综合征1; FMRP,脆弱的X智障蛋白; FXS,脆弱的X综合征; hie,低氧缺血性脑病; HS,小时; IGF-2,胰岛素 - 喜欢生长因子2; KHz,Kilohertz; ko,淘汰; L-DOPA,L-3,4-二羟基苯胺; LPS,脂多糖; MCAO,中大脑中动脉阻塞; MIA,母体免疫激活; MLX,Meloxicam; MP,多层感知者; mper1,鼠标周期1; MS,毫秒; mupet,小鼠超声剖面提取; namb,Ambiguus核; NDD,神经发育障碍; NF-κB,核因子kappa b; NLGN,神经素; nts,核科solitarius; P2X4R,嘌呤能P2X受体4; PAG,灰灰色; PD,帕金森氏病; PND,产后日; PTSD,创伤后应激障碍; RF,随机森林; SVM,支持向量机; Ube3a,泛素蛋白连接酶E3A; USV,超声波发声; Waaves,Wav-File自动化的声音环境分析。 wt,野生型。