ACCURATE(UTLS 区域大气气候和化学及气候趋势探索者)卫星任务能够对温室气体、热力学变量和上对流层和下平流层(UTLS)及更远处的风进行联合大气分析。它通过利用低地球轨道 (LEO) 卫星之间的卫星间信号链路,将 LEO 到 LEO 微波掩星与 LEO 到 LEO 红外激光掩星 (LIO) 相结合,实现了这一前所未有的范围。这一新概念是在 WegCenter 构思的,由来自 12 多个国家的 20 多个科学合作伙伴组成的国际团队向 ESA 未来地球探索者任务的选择过程提出。虽然由于当时部分技术还不成熟,2006 年未入选正式的 A 前研究,但它获得了非常积极的评价,并被推荐进行进一步的研究和开发。
摘要。对对流层和下层平流层(UTL)中湿度的了解非常特别,因为它对卷云的形成及其气候影响的重要性。但是,当前天气模型中的UTLS水蒸气分布遭受大型不确定性。在这里,我们使用人工神经网络(ANN)开发了一种基于动态的Hu-Intimity校正方法,以改善ECMWF数值天气预测中ICE(RHI)的相对湿度。该模型是通过ECMWF ERA5的时间依赖性热力学和动力学变量进行训练的,以及来自服务机内的湿度测量,用于全球观察系统(IAGOS)。在±2 ERA5在iagos-tripter周围的±2 ERA5压力下的大气变量用于ANN训练。RHI,温度和地球电位对ANN结果的影响最高,而其他动态变量则具有低至中等或高度的重要性。ANN表现出色,UT中预测的RHI的平均绝对误差(MAE)为5.7%,确定的系数(R 2)为0.95,与ERA5 RHI相比,它显着改善(MAE5 RHI(MAE5)(15.8%; R 2 of 0.66)。ANN模型还提高了全套UT/LS和多云UTL的预测技能,并消除了RHI = 100%的峰值。相对于冰光厚度的MeteoSat第二代(MSG)观察到的结果比在没有湿度校正的结果上对大西洋上的关节尾卷心场景进行湿度校正的观察更好。ANN方法可以应用于其他天气模型,以改善湿度预测并支持航空和气候研究应用。
水蒸气是最重要的大气成分,对地球辐射收支有很大影响。除了水蒸气的直接辐射强迫外,其通过产生云滴的间接效应也在气候中起着至关重要的作用。因此,准确和定期地表征其在大气中的丰度至关重要,特别是在不断变化的气候系统中。在大气的上对流层/下平流层 (UTLS) 区域,水蒸气通过均质或非均质冻结过程驱动纯冰 (卷云) 云的生成,并通过沉积驱动云冰粒子的生长。卷云的辐射效应仍不为人所知;一些研究表明它们会冷却,而另一些研究表明它们会变暖,这取决于云光学厚度和冰粒大小和浓度的表现。在欧洲 CARIBIC 项目 [ 1 , 2 ](基于仪器容器的定期大气调查的民用飞机)的框架内,自 2005 年以来,我们利用实验室开发的基于光声 (PA) 方法的仪器,在 UTLS 区域(10 至 12 公里高度)的商用飞机上定期测量大气水蒸气和总水(即水蒸气和云水/冰的总和)浓度。机载 PA 水蒸气测量仪(称为 WaSul-Hygro)基于电信型近红外 (NIR) 二极管激光器。此外,为了确保同时测量总水量和水蒸气的要求,WaSul–Hygro 拥有针对低温低压条件优化的双室 PA 装置。这种操作由安装在飞机下方的特殊环境进气系统实现,该系统包含一个侧向进气口和一个前向进气口,用于对水蒸气进行采样
Ayse Koyun是环境科学与工程系的博士后科学家以及哈佛大学的工程与应用科学学院。她拥有维也纳技术大学技术化学(材料科学)的医生学位。在她的博士学位期间,AYSE专注于使用原子力显微镜进行材料表征,并研究了建筑材料的老化。作为哈佛大学的博士后科学家,她的研究现在以了解气候和人类健康的气溶胶的影响(悬挂在空中的微小颗粒)的影响。她探讨了诸如构造之类的活动如何产生这些粒子以及它们如何影响吸气者的福祉。在哈佛大学,Ayse采用了一种称为电动力悬浮的尖端技术,以悬浮在空中中的气溶胶颗粒,从而使她能够研究它们在经历各种条件时如何发展,例如光暴露和湿度变化。她检查了来自不同来源的颗粒,从燃烧植物产生的烟雾到特定的化合物。通过阐明这些悬浮的颗粒,她观察到它们的反应和转化,阐明了气溶胶在环境中的行为及其对气候的潜在影响。除了在哈佛大学的工作外,AYSE还为SABER(平流层气溶胶过程,预算和辐射效应)任务做出了贡献,这是一项扩展的空中科学测量计划,研究了上层对流层和下层平流层(UTLS)的运输,化学,微物理和辐射特性。利用NASA WB-57高海拔研究飞机,Ayse有助于表征任务期间收集的微型气溶胶。SABER部署提供了对气溶胶尺寸分布,成分和辐射特性的广泛详细测量,以及不同区域和季节中相关的微量气体。这些观察结果对于提高全球模型准确模拟平流层气溶胶加载变化的辐射,动力学和化学影响的能力至关重要。ayse的总体目标是提供有关气溶胶颗粒对我们世界的起源,转化和影响的关键见解。通过为气候模型的发展做出贡献,并制定了减轻气溶胶的不利影响的战略,她的目标是对气候研究和公共卫生产生有意义的影响。最终,她在实验室和Saber任务中收集的实验数据有助于完善全球化学气候模型,从而弥合了科学发现和大规模模拟之间的差距。