通过ADAR酶将腺苷转化为RNA中的插入,称为“ RNA编辑”,对于健康的脑部开发至关重要。 编辑在神经精神疾病中失调,但尚未在分裂神经元的水平上进行大规模研究。 我们从一个神经典型雌性供体的六个皮质区域的3055个神经元中量化了RNA编辑位点,并发现至少十个核中存在41,930个位点。 大多数站点位于内含子或3'UTR中的Alu重复序列中,大约80%在公共RNA编辑数据库中分类。 我们确定了9285个假定的新型编辑站点,其中29%也可以在无关的供体中检测到。 与大量RNA-seq研究的结果相交,为1730个地点提供了细胞类型和空间环境,这些位点在精神分裂症脑供体中差异编辑,以及自闭症供体中的910个此类部位。 自闭症相关的基因还具有预测可修饰RNA结构的编辑位点。 抑制性神经元比兴奋性神经元显示出更高的整体转录组编辑,并且在额叶皮层中观察到最高的编辑速率。 我们使用广义线性模型来识别细胞类型之间的差异编辑位点和基因。 在兴奋性神经元中优先编辑了二十九个基因,在抑制性神经元中更严重地编辑了43个基因,包括RBFOX1,其靶基因,与自闭症相关的Prader-Prader-Willi locus(15q11)中的基因。 来自基因座15q11的SNORD115/116基因的丰度与整个转录组的编辑呈正相关。通过ADAR酶将腺苷转化为RNA中的插入,称为“ RNA编辑”,对于健康的脑部开发至关重要。编辑在神经精神疾病中失调,但尚未在分裂神经元的水平上进行大规模研究。我们从一个神经典型雌性供体的六个皮质区域的3055个神经元中量化了RNA编辑位点,并发现至少十个核中存在41,930个位点。大多数站点位于内含子或3'UTR中的Alu重复序列中,大约80%在公共RNA编辑数据库中分类。我们确定了9285个假定的新型编辑站点,其中29%也可以在无关的供体中检测到。与大量RNA-seq研究的结果相交,为1730个地点提供了细胞类型和空间环境,这些位点在精神分裂症脑供体中差异编辑,以及自闭症供体中的910个此类部位。自闭症相关的基因还具有预测可修饰RNA结构的编辑位点。抑制性神经元比兴奋性神经元显示出更高的整体转录组编辑,并且在额叶皮层中观察到最高的编辑速率。我们使用广义线性模型来识别细胞类型之间的差异编辑位点和基因。在兴奋性神经元中优先编辑了二十九个基因,在抑制性神经元中更严重地编辑了43个基因,包括RBFOX1,其靶基因,与自闭症相关的Prader-Prader-Willi locus(15q11)中的基因。来自基因座15q11的SNORD115/116基因的丰度与整个转录组的编辑呈正相关。我们认为,抑制性神经元中自闭症相关基因的编辑不足可能会与这些细胞在自闭症中的特定扰动进行分配。
大多数人乳腺癌取决于激素刺激的雌激素受体α(ER),并且对其抑制作用敏感。治疗耐药性在大多数晚期癌症中都产生,因为遗传改变会促进ER本身或ER靶基因的配体独立激活。虽然在某些情况下可以重新定位具有新的ER拮抗剂的ER配体结合结构域(LBD)可以起作用,但这些药物在许多遗传背景中在包括失去LBD或失去LBD的ER融合的许多遗传背景中无效。通过识别ER翻译的机制,我们在本文中提出了一种靶向ER且难以治疗ER变体的替代策略。我们发现ER翻译是独立的和MTOR抑制剂不敏感的,但取决于5'UTR元素,并且对MRNA解旋酶的翻译起始因子EIF4A(一种mRNA解旋酶)的药理抑制敏感。eIF4A抑制迅速降低了ER的ER和短寿命靶标的表达,例如Cyclin D1和Cyclin d-CDK复合物中乳腺癌细胞中的其他成分。这些作用转化为抑制多种非配体乳腺癌模型的生长,包括由缺乏配体结合位点的ER融合蛋白驱动的乳腺癌模型。EIF4A抑制的功效与ER降解器相结合时会增强。伴随抑制ER合成及其降解的诱导会导致ER表达和肿瘤生长的协同和持久的抑制作用。在组合治疗中已经观察到了多种临床反应,包括持久的回归。简介这些发现的临床重要性通过选择性EIF4A抑制剂Zotatifin的早期临床试验(NCT04092673)的结果证实,在转移性乳腺癌阳性乳腺癌患者中。这些数据表明,EIF4A抑制作用可能是治疗晚期ER+乳腺癌的有用新策略。
背景:肝癌在全球范围内排名前四名,需要有效且安全的治疗。铁凋亡是由铁依赖性脂质过氧化驱动的一种新型的调节细胞死亡形式,被认为是癌症的有前途的治疗靶标。在这项工作中,我们旨在研究麻醉氯胺酮对肝癌的增殖和铁毒性的影响。方法:通过细胞计数套件8(CCK-8),菌落形成和5-乙基-2'-脱氧尿苷(EDU)分析检测到细胞活力和增殖。铁凋亡是由Fe 2+,脂质活性氧(ROS)和丙二醛(MDA)的水平确定的。通过实时PCR测定法检查了LNCPVT1,miR-214-3p和谷胱甘肽过氧化物酶4(GPX4)的RNA水平。临床肝肿瘤样品,以检测长期非编码RNA LNCPVT1,miR-214-3p和GPX4的水平,并通过Pearson比较测试评估它们的相关性。进行了荧光素酶报告基因测定和RNA下拉,以确定LNCPVT1,miR-214-3p和GPX4 3ʹUTR之间的结合。结果:氯胺酮在体外和体内显着抑制了肝癌细胞的生存力和增殖,以及刺激的铁毒性,以及LNCPVT1和GPX4的表达降低。LNCPVT1直接与miR-214-3p相互作用,以阻碍其作为GPX4海绵的作用。LNCPVT1的耗竭加速了活癌细胞的铁凋亡,而miR-214-3p抑制和GPX4过表达却逆转了这种作用。MiR-214-3p抑制和GPX4过表达也抑制了氯胺酮诱导的细胞生长抑制和铁凋亡。结论:在这项工作中,我们确定氯胺酮抑制了肝癌细胞的生存能力并诱导了铁毒性,并确定了LNCPVT1/ MIR-214-3P/ GPX4轴的可能调节机制。关键字:肝癌,氯胺酮,LNCPVT1,mir-214-3p,GPX4
AAIB 航空事故调查处 ADELT 自动部署紧急定位应答器 AFDS 自动漂浮部署系统 AIL 适航信息传单 ANO 空中导航命令 AOC 航空运营商证书 AOGBO 英国境外申请命令 BCAR 英国民航适航要求 BHAB 英国直升机咨询委员会 BROA 英国钻机所有者协会 BMT 英国海事技术 CAA 民航局 CAP 民航出版物 DOT 交通部 DRA 国防研究局 FAA 联邦航空管理局 FRC 快速救援艇 HARP 直升机适航审查小组 HMLC 直升机管理联络委员会(见注释*) HSC 健康与安全委员会 HSE 健康与安全执行局 HSMRC 直升机安全研究管理委员会(见注释*) HSSG 直升机安全指导小组(见注释*) HSW 工作健康与安全 HUZUP 头罩 - 拉链 IADC 国际钻井承包商协会 IAL 国际航空广播有限公司 ICAO 国际民用航空组织 IFE 机上娱乐 JAA 联合航空当局 JAR 联合航空要求 LSJ 救生衣 NATS 国家空中交通服务 OHOSG 海上直升机甲板运营指导小组(见注释*) OPITO 海上石油工业培训组织 PA 公共广播 RAF IAM 皇家空军航空医学研究所 RGIT 罗伯特戈登理工学院 RHOSS 海上直升机评估
1) Watson, J.-D. & Crick, F.-H. (1953) 核酸的分子结构;脱氧核糖核酸的结构。Nature,171,737 ‒ 738。 2) Zhao, J.、Bacolla, A.、Wang, G.、& Vasquez, KM (2010) 非B型DNA结构引起的遗传不稳定性与进化。Cell. Mol. Life Sci.,67,43 ‒ 62。 3) Asamitsu, S.、Takeuchi, M.、Ikenoshita, S.、Imai, Y.、Kashi- wagi, H.、& Shioda, N. (2019) G-四链体结构在神经生物学和神经药理学中的应用前景。Int. J. Mol. Sci. , 20 , 2884. 4) Kumar, N., Sahoo, B., Varun, K.-A., Maiti, S., & Maiti, S. (2008) 环长度变化对四链体-沃森-克里克双链体竞争的影响。核酸研究。, 36 , 4433 ‒ 4442。5) Bhattacharyya, D., Mirihana Arachchilage, G., & Basu, S. (2016) G-四链体折叠和稳定性中的金属阳离子。前沿化学。, 4 , 38。6) Keniry, M.-A. (2001) 核酸中的四链体结构。生物聚合物,56,123-146。7) Yaku, H., Fujimoto, T., Murashima, T., Miyoshi, D., & Sugi-moto, N. (2012) 酞菁:一类具有许多潜在应用的新型 G-四链体配体。Chem. Commun. (Camb.),48,6203-6216。8) Patel, D.-J., Phan, A.-T., & Kuryavyi, V. (2007) 人类端粒、致癌启动子和 5′-UTR G-四链体:用于癌症治疗的多种高阶 DNA 和 RNA 靶点。Nucleic Acids Res. , 35 , 7429 œ 7455. 9) Joachimi, A., Benz, A., & Hartig, J.-S. (2009) DNA 与 RNA 四链体结构与稳定性的比较. Bioorg. Med. Chem. , 17 , 6811 œ 6815. 10) Zhang, A.-Y., Bugaut, A., & Balasubramanian, S. (2011) 分子内 RNA G-四链体稳定性与拓扑结构的环长依赖性序列独立分析. Biochemistry , 50 , 7251 œ 7258. 11) Phan, A.-T., Kuryavyi, V., Luu, K.-N., & Patel, D.-J. (2007)
癌症是我们年龄的重要文明问题。科学家继续寻找负责致癌过程的新因素。在1993年,维克多·安布罗斯(Victor Ambros),罗莎琳(Rosalind Lee)和隆达·费恩鲍姆(Rhonda Feinbaum)发现,埃列哥秀丽隐杆线虫基因lin-4涉及控制这种非寄生虫线虫的幼虫发育,没有编码蛋白质,但没有编码蛋白质,而是一对短rna-about 22和大约61个基础。相关的RNA反过来是对3'UTR LIN-14基因结束时许多地方的反义互补的[1]。进一步的研究表明,LIN-4基因产物通过减少LIN14蛋白的量来调节LIN-14基因,同时保持LIN-14的mRNA浓度[2]。最后,有人认为这些短RNA对LIN-14的作用具有抑制作用,从而调节了从秀丽隐杆线虫的第一个幼虫阶段到第二阶段的转化开始[2]。RNA被认为是丰富的microRNA家族的第一个,主要是执行调节功能[2]。接下来的几年带来了新的microRNA分子。在许多生物体中,不仅在哺乳动物,昆虫,结节或植物中都观察到它们的存在[1]。绝大多数microRNA仍然在进化上保守[1,2]。单个microRNA通常也存在于特定细胞中,例如肝细胞中的miR-122 [1]。microRNA的基因以非常多样化的方式位于基因组中。它们是操纵子的一部分,发生在蛋白质编码序列的一部分之间[2]。它们发生在未翻译的外显子,内含子或序列中[2]。它们可能构成一个独立的转录单元[2]。作为内含子的一个组成部分,可以将它们与编码蛋白质的整个基因一起转录,从而导致microRNA和mRNA(PRE-mRNA)[1]。MicroRNA的基因由聚合酶II或III RNA转录[1,2]。microRNA的基因通常是在被转录为多孔子转录单元的簇中组织的[3]。它们可以在蛋白质编码序列和作为独立转录单元的功能之间发生,它们也可以位于编码序列中[4]。转录单元的这种布置可以导致miRNA和mRNA转录本的同时形成[5]。miRNA基因以某种方式组织
背景:CHO 细胞是生产生物制药的首选,而基因组编辑技术为提高重组蛋白产量提供了机会。靶向凋亡相关基因,如 Caspases 8 相关蛋白 2 (CASP8AP2),可提高 CHO 细胞的活力和生产力。将强大的策略与 CRISPR-Cas9 系统相结合使其能够应用于 CHO 细胞工程。目标:本研究旨在开发一种经济有效的方案,使用 CRISPR-Cas9 系统结合 HITI 策略同时在 CHO 细胞中缺失/插入 CASP8AP2 基因,并评估其对细胞活力和蛋白质表达的影响。材料和方法:我们通过将 CRISPR/Cas9 与 HITI 策略相结合,开发了一种有效的 CHO 细胞工程方案。使用 CHOPCHOP 软件设计了两个不同的 sgRNA 序列以靶向 CASP8AP2 基因的 3' UTR 区域。使用经济高效的 PEI 试剂将 gRNA 克隆到 PX459 和 PX460-1 载体中,并转染到 CHO 细胞中。采用手动选择系统简化单细胞克隆过程。MTT 测定评估 24、48 和 72 小时的基因沉默和细胞活力。流式细胞术评估 CASP8AP2 沉默的 CHO 细胞中的蛋白质表达。结果:研究证实了将 CRISPR-Cas9 与 HITI 策略相结合的稳健性,在产生敲除克隆方面实现了 60% 的高效率。PEI 转染成功地将构建体传递给近 65% 的克隆,其中大多数是纯合的。该方案被证明适用于资源有限的实验室,只需要倒置荧光显微镜。 CASP8AP2 敲除 (CHO-KO) 细胞经 NaBu 处理后,与 CHO-K1 细胞相比,其细胞存活率显著延长,48 小时时的 IC50 值分别为 7.28 mM 和 14.25 mM(P 值:24 小时 ≤ 0.0001,48 小时 ≤ 0.0001,P 值:72 小时 = 0.0007)。与天然细胞相比,CHO CASP8AP2 沉默细胞的 JRed 表达增加了 1.3 倍。结论:使用 CRISPR-Cas9 和 HITI 策略有效改造 CHO 细胞,同时进行 CASP8AP2 基因缺失/插入,从而提高细胞存活率和蛋白质表达。
前列腺癌(PCA)是全球男性尿液系统中常见的恶性肿瘤之一,其发病率和死亡率逐年增加[1]。更糟糕的是,通常发生骨转移和复发,这使预后较差[2]。PCA的基本诊断包括直肠数字检查检测,血清前列腺植物抗原(PSA)检测,活检分析和组织学分析[3]。但是,很难通过这些方法来验证PCA的进展和非正常增生[4,5]。在细胞性的PSA结果中易受药物,炎症和良性前列腺病变的影响,导致PCA预后缺乏特异性和敏感性[6]。因此,找到新的临床诊断标记至关重要。microRNA(miRNA)是具有高保守性的单链非编码RNA。它们的长度约为18至22个核苷酸[7]。miRNA通过与Messenger RNA(mRNA)的3'未翻译区(UTR)中的序列结合而干扰蛋白质的翻译,从而降低了mRNA的稳定性或抑制跨文本基因的表达[8]。参与各种生理过程,例如细胞增殖和凋亡,在疾病中起着重要的调节作用,并且与各种肿瘤的发生密切相关[9-11]。近年来,循环miRNA作为各种疾病的诊断标记,由于其在监测方面的便利性[12-14]。但是,关于生物标志物的研究仍然不足。研究表明,循环miRNA是PCA诊断的互补候选生物标志物。随着测序技术的发展,生物信息学已被用来探索基因水平上各种疾病的病理机制。基因表达综合(GEO)数据库是一种在线基因芯片数据库的基因表达数据库[15]。基因图和微阵列用于筛选差异表达的miRNA(demirnas)和基因。本研究通过两个GEO数据集的相互作用分析确定了一个共同的目标miR-455-3p。然后分析 miR-455-3p与PCA中的临床特征的相关性,并用临床样品验证。进一步预测了miR-455-3p的下游结合基因。最后,为靶基因构建了蛋白质 - 蛋白相互作用(PPI)网络,并进行了基因和基因组(KEGG)途径分析的京都百科全书。
N6-甲基腺苷(m6A)是高等生物中最常见的修饰,研究表明m6A修饰广泛存在于哺乳动物、植物、真菌等生物体中(1),m6A修饰主要发生在DRACH序列的腺嘌呤上(2,3),高通量测序发现m6A主要分布在终止密码子、mRNA外显子、3'UTR及蛋白质编码区(4)。RNA的生物学功能依赖于多种修饰,其中甲基化占有很大比例(5,6)。m6A修饰在基因表达调控中起着基础性作用(7),同时m6A修饰还参与RNA的翻译、降解、剪接、去核和折叠等过程(5,8,9)。m6A的调控主要依赖于m6A的酶系统,包括“Writer”、“Eraser”、“Reader”。 “Writer”是一种甲基转移酶,主要包括METTL3、METTL14和WTAP,这些甲基转移酶将甲基从甲基供体S-腺苷甲硫氨酸(SAM)转移到RNA腺嘌呤的第六个N原子上。“Eraser”是一种去甲基化酶,主要包括脂肪质量与肥胖相关蛋白(FTO)和ALKBH5。FTO是第一个在m6A修饰中发现的去甲基化酶(9,10)。研究发现,用siRNA敲除FTO,mRNA中M6A含量增加,而过表达FTO则可降低细胞内m6A水平(11)。但也有学者认为FTO对m6A无明显影响,尤其是对核小RNA。相对于FTO作为去甲基化酶发挥作用的观点,有学者认为FTO和ALKBH5的调控位点为了逆转甲基化,倾向于维持非甲基化状态的稳定性(12)。在FTO被抑制或去除的情况下,异常的m6Am会干扰输出机制,可能导致mRNA的异常预剪接(13)。结合以上观点,FTO与m6A酶系统中其他蛋白的作用需要更加平衡和充分的研究。甲基化修饰要实现其生物学功能,需要与相应的识别蛋白结合,也就是“Reader”,包括YT521-B同源结构域家族(YTHDF)蛋白(14)。目前的研究更多集中在YTHDF1/2/3上,虽然这三者被认为具有不同的作用,但由于其序列的相似性和结合靶标的趋同,它们很可能具有叠加或协同作用(15)。根据目前的结果,Reader 包括 YTHDF 和 IGF2BP3 等蛋白质,
CRISPR、Cas12a、CPF1、大麦、诱变、单子叶植物、基因组编辑摘要我们报告了首次成功、高效使用大麦中的 Lb Cas12a,并描述了两种新型 Cas12a 变体的开发和应用。总共我们使用二十种不同的指南比较了五种编码序列 (CDS) 变体,包括两种新型变体和两种指南架构,针对 5 种不同的靶基因。我们发现不同 CDS 版本 (0-87%) 和指南架构 (0-70%) 之间的编辑效率存在很大差异,并且表明我们的两个新型 CDS 版本在该物种的测试中大大优于其他版本。我们展示了产生的突变的遗传性。我们的研究结果强调了优化单个物种的 CRISPR 系统的重要性,并可能有助于在其他单子叶植物中使用 Lb Cas12a。正文 毛螺菌科细菌 Cas12a (Lb Cas12a) 可能是继化脓性链球菌 Cas9 (Sp Cas9) 之后植物基因组编辑中第二广泛使用的可编程核酸酶,并且具有一些潜在优势。首先,由于其对 TTTV PAM 的要求与 NGG 的 Sp Cas9 要求不同,它可用于 GC 沙漠,而 GC 沙漠通常存在于内含子、UTR 和启动子区域中。其次,Lb Cas12a 通常比 Sp Cas9 产生更大的缺失,这可能在缺失研究中有用。第三,虽然 Sp Cas9 在靶标的 PAM 近端切割产生平端,但 Lb Cas12a 在 PAM 远端区域切割产生粘端;这两个特征可能解释了使用 Lb Cas12a 实现的基因靶向发生率更高 (Wolter 和 Puchta,2019)。已知在植物中起作用的三种版本的 Lb Cas12a 针对一个大麦靶标进行了测试。首先,是水稻优化的编码序列 (CDS) (Os Cas12a) (Tang et al., 2017);其次是人类优化的 CDS (Hs Cas12a),在双子叶植物中具有功能 (Bernabé-Orts et al., 2019);第三是拟南芥优化的 CDS,包含 D156R“耐高温”突变 (tt At Cas12a) (Schindele and Puchta, 2020)。我们还创建了两个新版本,携带 D156R 突变的 Hs Cas12a (tt Hs Cas12a) 和携带 8 个内含子的 tt At Cas12 (tt At Cas12+int)。这些内含子之前曾显著提高过 Sp Cas9 的效率(Grutzner 2021),因此我们使用相同的在线工具(NetGene2 - 2.42 - Services - DTU Health Tech)在我们的 tt At Cas12+int 设计中为拟南芥选项获得了较高的剪接置信度。