UUV 操作概念在四个重要领域受到技术限制:导航精度、通信带宽、强大的自主任务控制功能和电力系统能量密度。当前导航领域的进展令人鼓舞,在开发紧凑型高效导航系统和基于地图的导航技术方面取得了良好进展。通过使用光纤数据链路、研究最大化声学通信带宽和先进的数据压缩技术,正在解决通信能力的限制。然而,不利的水下信道将阻止高数据速率的声学信息传输。高容量、低成本的数据存储允许完成一些 UUV 任务而无需在线通信。实现 UUV 的强大自主控制的问题与 UUV 传感器技术的进步密切相关。最近的发展已经见证了智能导航、制导和控制系统以及智能在线任务规划系统的部署。然而,高能量密度电力系统的高成本限制了更先进的 UUV 系统概念的实现。
针对无人水下航行器(UUV)作业环境中决策的复杂性和不确定性,本文提出了一种基于动态影响图(DID)和期望效用理论的自主决策方法。首先,建立了UUV态势感知威胁评估模型。据此,建立了UUV自主决策的DID模型。然后,基于UUV威胁评估结果,推断并预测决策节点中各决策方案的效用。随后,利用最大期望效用原则选择最优自主决策方案。最后,通过仿真验证了DID方法的有效性。与传统专家系统相比,DID系统表现出很强的适应性,并且在不确定条件下的动态决策问题中表现出更好的解决方案。
在继续之前,重要的是将 UUV 置于无人系统的更广泛背景下考虑。无人驾驶飞行器现在在许多军事行动中很常见,既可用作武器(巡航导弹),又可用作侦察平台(捕食者无人机)。无人驾驶地面车辆正在开发中,用于高风险行动,例如雷场作业和炸弹处理,以及监视。在海洋环境中,已经开发了各种无人系统,包括:拖曳系统;硬系绳设备,例如遥控车辆 (ROV);不能完全潜入水中的系统,例如无人水面车辆或半潜式车辆;以及海底爬行器。其中许多系统或车辆已经使用多年(用于深水搜索和打捞的 ROV),或处于开发的后期阶段(海军的远程扫雷系统 - RMS)。
明确了(1)船体部件模块化、(2)部件设备模块化、(3)控制软件模块化的接口,并获得了以模块化结构实现UUV的前景。 规范制定的结果将汇总为《UUV模块化标准(草案)》。
通过链接无人航行器(UUV和USV),高效获取水下信息,扩大无人航行器在预警监视、水雷对抗等方面的应用范围,实现零伤亡。未来的无人机系统将有助于(最大限度地减少士兵的牺牲)。
针对无人水下航行器(UUV)作业环境中决策的复杂性和不确定性,该研究提出一种基于动态影响图(DID)和期望效用理论的自主决策方法。首先,建立UUV态势感知威胁评估模型,据此提出UUV自主决策的DID模型。然后,基于UUV威胁评估结果,推断并预测决策节点中各决策方案的效用。随后,利用最大期望效用原则选取最优自主决策方案。最后,通过仿真验证了DID方法的有效性。与传统专家系统相比,DID系统表现出很强的适应性,能够更好地解决不确定条件下的动态决策问题。
海战环境正在迅速变化。美国海军正在适应形势,继续保持其蓝水优势,同时建设棕水能力。无人系统(如无人空中无人机)在应对新战场挑战中发挥着关键作用。无人水下航行器 (UUV) 正在成为海军的海上版空军无人机。与传统的舰载作战相比,UUV 代表了一种低端颠覆性技术,它能够承担越来越复杂的角色,从而打破战场熵的平衡。它们可以改善任务结果,并且成本仅为传统作战的一小部分。此外,麻省理工学院目前正在开发的长期水下电源将使 UUV 的射程和作战续航能力提高一个数量级。安装这些系统不仅能让 UUV 完成新的、以前不可能完成的任务,还能大幅降低成本。我探讨了 UUV 和长期水下电源对海军及其未来行动的财务和战略影响。通过研究当前的海军行动以及 UUV 可以补充或取代潜水员和船只的方式,我确定了使用 UUV 技术降低人员生命风险、降低成本和利用技术学习曲线的方法。我得出的结论是,随着 UUV 的广泛使用,可以立即节省大量成本,而目前的研究投资水平与 UUV 项目的风险和回报相比是不足的。
海战环境正在迅速变化。美国海军正在适应变化,继续保持其在蓝水领域的主导地位,同时建设棕水能力。无人系统,如无人空中无人机,在应对新的战场挑战中发挥着关键作用。无人水下航行器 (UUV) 正在成为海军的海上版空军无人机。与传统的舰载作战相比,UUV 代表了一种低端颠覆性技术,它能够承担越来越复杂的角色,打破战场熵的天平。它们可以改善任务结果,而成本仅为传统作战的一小部分。此外,麻省理工学院目前正在开发的长期水下电源将使 UUV 的射程和作战续航能力提高一个数量级。安装这些系统不仅可以让 UUV 完成新的、以前不可能完成的任务,还可以大幅降低成本。我探讨了 UUV 和长期水下电源对海军及其未来作战的财务和战略影响。通过研究当前的海军行动以及 UUV 可以补充或取代潜水员和船只的方式,我确定了使用 UUV 技术降低人员生命风险、降低成本和利用技术学习曲线的方法。我得出的结论是,随着 UUV 的广泛使用,可以立即节省大量成本,而目前的研究投资水平与 UUV 项目的风险和回报相比是不足的。
用于为海洋中的无人水下航行器 (UUV) 或自主传感系统提供动力的热梯度能量产生技术主要处于研发阶段或以有限的规模商业化应用,而盐度梯度能量产生技术尚未得到充分研究。对适合长期部署的自供电 UUV 的需求日益增长,需要进一步研究小规模海洋梯度能量系统。在本研究中,我们对利用海洋热梯度或盐度梯度能量为 UUV 提供动力进行了全面的回顾,重点关注滑翔机和剖面浮标。基于相变材料 (PCM) 的 UUV 热梯度能量系统无法提供为自主传感系统提供动力所需的能量,因为这些系统的能量转换效率低。除了通过开发更高效的机电系统来降低能耗之外,增强 PCM 的热导率还可以通过提高 UUV 的发电率来帮助应对这一挑战。其他一些新兴技术,如热电发电机、形状记忆合金和小型热力循环系统,已显示出为 UUV 提供动力的潜力,但它们仍处于实验室测试或概念设计阶段。基于盐度梯度、反电渗析和压力延迟渗透的最先进发电技术在经济上仍然不适合大规模部署,主要是因为在恶劣的盐环境中运行所需的组件成本高昂。我们的可行性评估表明,现有的盐度梯度发电技术不能直接为公海中的 UUV 提供动力。
• 无人水下航行器 (UUV) – 提供水下测试和评估 – 与其他作战中心部门、潜艇发展第五中队合作 – 提供 UUV 母港设施、支持 • 网络安全与工程 – 认证与认可 – 测试与分析 – 主题专家