引用(温哥华):Das等。,生产用于改善沿海盐水沙质土壤的稻草生物炭。国际生物资源与压力管理杂志,2025年; 16(3),01-13。https://doi.org/10.23910/1.2025.5841。 版权所有:©2025 Das等。 这是根据Creative Commons Attribution-Nononcermercial-4.0国际许可证的条款分发的开放访问文章,允许在作者和源源后的任何媒介中不受限制地使用,分发和复制。 数据可用性声明:法律限制是对原始数据的公众共享施加的。 但是,作者有权根据要求以原始形式传输或共享数据,但要么符合原始同意的条件和原始研究研究。 此外,数据的访问需要满足用户是否符合道德和法律义务作为数据控制者的义务,以便允许在原始研究之外进行二次使用数据。 资金:LT-05项目的CSIR-IMMT环境与可持续发展部经济支持的工作。 利益冲突:作者宣布不存在利益冲突。https://doi.org/10.23910/1.2025.5841。版权所有:©2025 Das等。这是根据Creative Commons Attribution-Nononcermercial-4.0国际许可证的条款分发的开放访问文章,允许在作者和源源后的任何媒介中不受限制地使用,分发和复制。数据可用性声明:法律限制是对原始数据的公众共享施加的。但是,作者有权根据要求以原始形式传输或共享数据,但要么符合原始同意的条件和原始研究研究。此外,数据的访问需要满足用户是否符合道德和法律义务作为数据控制者的义务,以便允许在原始研究之外进行二次使用数据。资金:LT-05项目的CSIR-IMMT环境与可持续发展部经济支持的工作。利益冲突:作者宣布不存在利益冲突。
在2030年之前提供21 ev的愿景。ioniq 9的特征是其优雅,干净,时尚的设计,具有优质,高质量和精美的机舱,可提供宽敞,通风的感觉。ioniq 9 ev功能可提供强大的范围和类领先的充电能力。ioniq 9确实是“建造的”,可容纳宽敞的内饰中多达七名乘员,同时提供满足每个人个人需求的创新功能。ioniq 9不仅仅是运输,这是一个空间,家人和朋友可以与最新技术保持联系,同时享受使每一段旅程都特别的隐私和放松。是通过其智能连接功能来管理繁忙的时间表还是在其室内室内放松身心,IONIQ 9适用于用户的动态生活方式。通过内部空间的创新利用来最大化舒适性和便利性
广泛的研究表明,医疗工人(HCW)的服装经常被微生物和病原体污染,对感染带来了重大风险(Mitchell等,2015)。类似的设备也利用Arduino微控制器来管理紫外线和消毒过程(Albayyat等,2024)。UV-C辐射在200至270 nm的波长范围内运行,有效地破坏了DNA分子键,使微生物无活性(Buonanno等,2020)。此外,HEPA过滤器在去除空降病原体方面表现出显着的疗效,达到了99.97%以上的病毒捕获率(Ueki等,2022)。医疗服装(AUVISMA)自动紫外线辐照系统通过有效消除医疗制服,从而整合UV-C辐射和HEPA过滤,以增强医疗保健中的卫生标准,从而保护医疗保健工作者和患者。
胶质母细胞瘤(GBM)是最致命的脑癌,GBM干细胞(GSC)驱动治疗性耐药性和复发性。靶向GSC提供了预防肿瘤复发和改善预后的有希望的策略。我们识别SUV39H1,一种组蛋白-3,赖氨酸-9甲基转移酶,对于GSC维持和GBM进展至关重要。SUV39H1在GBM中被上调,单细胞RNA-Seq由于超增强剂介导的激活而在GSC中的表达主要显示。GSC中Suv39H1的敲低损害了它们的增殖和茎。 全细胞RNA-seq分析表明,SUV39H1调节G 2 /M细胞周期进展,干细胞维持和GSC中的细胞死亡途径。 通过将RNA-Seq数据与ATAC-SEQ数据集成在一起,我们进一步证明了SUV39H1的敲低改变了与这些途径相关的关键基因中的染色质可及性。 Chaetocin是SUV39H1抑制剂,模仿SUV39H1敲低的作用,将GSC的茎和敏化细胞降低到Temozolomide,这是标准GBM化学疗法。 在患者衍生的异种移植模型中,靶向SUV39H1抑制了GSC驱动的肿瘤生长。 在临床上,高SUV39H1表达与胶质瘤预后不良相关,支持其作为治疗靶点的相关性。 这项研究将SUV39H1确定为GSC维护的关键调节剂,并且是改善GBM治疗和患者结局的有前途的治疗靶标。GSC中Suv39H1的敲低损害了它们的增殖和茎。全细胞RNA-seq分析表明,SUV39H1调节G 2 /M细胞周期进展,干细胞维持和GSC中的细胞死亡途径。通过将RNA-Seq数据与ATAC-SEQ数据集成在一起,我们进一步证明了SUV39H1的敲低改变了与这些途径相关的关键基因中的染色质可及性。Chaetocin是SUV39H1抑制剂,模仿SUV39H1敲低的作用,将GSC的茎和敏化细胞降低到Temozolomide,这是标准GBM化学疗法。在患者衍生的异种移植模型中,靶向SUV39H1抑制了GSC驱动的肿瘤生长。在临床上,高SUV39H1表达与胶质瘤预后不良相关,支持其作为治疗靶点的相关性。这项研究将SUV39H1确定为GSC维护的关键调节剂,并且是改善GBM治疗和患者结局的有前途的治疗靶标。
微型和纳米结构的表面受到了广泛的关注,因为它们在传感器技术,表面摩擦学以及依从性和能量收集等广泛应用中的潜力。已经研究了几种修改材料表面,例如血浆处理,离子梁溅射,反应性离子蚀刻和激光处理等材料表面[1-3]。在这些方法中,由于其良好的空间分辨率和对不同材料(例如金属,半导体,介电和聚合物)的良好空间分辨率和高可重现性,激光表面处理近年来引起了人们的兴趣[4-6]。从连续波(CW)到超短梁以及从UV到IR的工作波长已经使用了许多类型的激光源[7-8]。由于激光 - 物质相互作用,从纳米到微尺度的各种结构和模式取决于激光参数和材料特性,例如激光诱导的周期性表面结构(LIPS),2D圆形液滴和特定的微型结构,称为Spikes [9-14]。
非蒸发的液体燃料膜是汽油直接注入发动机烟灰形成的主要原因。在这项研究中,开发了一种UV-VIS吸收技术,以在加热的恒流实验中直接注射后的燃料膜厚度成像。一个六孔GDI喷油器将燃料在100栏上喷涂到距喷嘴30毫米的透明板上。燃料由30%甲苯 / 70%的Iso-octane(分别为383和372 K)组成。气体和壁温度分别为376和352 K,气压1 bar。燃料的蒸发部分被点燃,随后的燃烧膜旁边的燃烧导致了烟灰的形成。在加剧的高速CMOS摄像头上成像了从脉冲LED照明中传输散射的背光。液态甲苯的紫外线吸光度为265 nm的LED。然而,在这种波长下,甲苯蒸气吸收,液体散射,烟灰和烟灰前体的灭绝以及烟灰白幕都干扰了液体燃料的吸光度。为了估计散射和烟灰消光的贡献,将310、365和520 nm处的LED添加到梁路径中,并以32 kHz的帧速率在高速摄像头上与连续的帧相吻合。获得了一个深色框架以说明烟灰阴影,以使所得5图像序列的重复速率为6.4 kHz。通过在先前的工作中开发的形态图像处理估算了甲苯蒸气的吸收,以将弥漫性的,移动的蒸气云与燃料膜的锋利,固定特征分开。允许获得时空分辨的燃油膜厚度测量和有关烟灰的其他信息的多光谱方法。
会议的目的是将在原子和分子物理学从事的年轻科学家汇集在一起,从而促进跨学科的知识交流。会议将涵盖不同环境中原子和分子的结构,动力学和相互作用的基本和应用研究,并从实验和理论角度贡献。这些研究对于促进我们对化学反应性,光谱,量子现象及其在天体物理学,纳米科学和材料科学等领域的应用至关重要。
壳聚糖是由114批量的Mahtani壳聚糖提供的,其乙酰化度(DA)为2%,由1 H NMR确定,质量平均摩尔质量(m w)为619 kg/mol,分散剂(ð)的分散剂(1.6),由尺寸 - 1.6,通过尺寸 - 散发性切除率确定。壳聚糖以1、2-丙二醇和ACOH(50/50 V/V)的水醇混合物中的0.5%(w/v)以0.5%(w/v)的形式进行乙酰基壳。在剧烈的机械搅拌下将壳聚糖(GLCN)单位的静态藻类添加到D-葡萄糖(GLCN)单元中,并混合18小时以达到靶向DA。然后将壳溶液通过纤维素膜过滤,孔径从3 µm降低至0.45 µm。乙酰化的壳聚糖最终用NH 4 OH沉淀,用去离子水洗涤并冷冻干燥。乙酰化的壳聚糖,DA为35%,M W的693 kDa和1.8的分散性。
在ZS汽油型变体的核心中,在Essence Turbo模型中以5500rpm的速度达到了高效且响应式的动力总成,最高可达125kW的峰值功率。设计用于控制和舒适的,其增强的驾驶动态和升级的悬架可确保骑行 - 无论是在城市街道上还是在周末度假。拥有宽敞的55L燃油箱和有效的消耗率为6.9升/100km*,较少的停止意味着在没有折衷的情况下享受旅程的时间更多。新开发的CVT变速箱具有87%的最大功率效率和8个模拟齿轮,可用于超平滑,直观的变化。是导航城市狭窄的角落还是进入高速公路巡航,ZS可以通过强大的变速箱提供精致的,不间断的体验,可确保无缝的过渡,使您充满信心地将您连接到道路上。
1罗马的INAF媒体观察员,通过di Frascati 33,00078 Monte Porzio Catone,意大利电子邮件:Antonello.calabro.calabro@inaf.it 2 Trieste的Inf-Asonolical Personical Personical of-B.B.通过G.B.TIEPOLO 11,34143意大利Trieste 3 Ifpu-宇宙基本物理学研究所,通过贝鲁特2,34151意大利Trieste 4 Supa 4 Supa,爱丁堡大学天文学研究所,爱丁堡大学,皇家天文台,爱丁堡EH9 3HJ,UK 5 Iniforno pom pogernonna pogernoso, /3,40129意大利博洛尼亚6博洛尼亚大学物理与天文学系(DIFA),通过Gobetti 93/2,40129 Bologna,意大利的Bologna 7 Institution of Resjuction convositionuciporpiparinar en Ciencia an Ciencia en ciencia en Ciencia y Ciencia y Ciencia y Ciencia y Ciencia ycienogía,raounnoragialial,raúlition,raúlition,laounnoragna y serano y serena塞雷纳大学,公平。Juan Cisternas 1200 Norte,La Serena,智利9 Inf -Arcetri的Astro Phyic天文台,Largo E. Fermi 5,50125佛罗伦萨,意大利佛罗伦萨10 Cosmic Dawn Center,Niels Bohr Institute,Copenhagen University,Julian Maries Maries Vej 30,Denmard Coptarys forsers forsars copenhagen大学赫特福德郡,帽子,英国,英国12个太空望远镜科学研究所,3700 San Martin Drive,Baltimore,Baltimore,MD 21218,美国13欧洲南部天台观测站(ESO),Vitacura,Vitacura,Vitacura,Vitacura,Vitacura,Vitacura,Vitacura,Vitacura,Vitacura,Niels Bohr Bohr Bohr Bohr Bohr,Bohr哥本哈格大学,Lyngbyvej 2,Lyngbyvej 2,2100 Copenhagen,2100 Copenhagen,2100 Copenhagen,Copenhagen,Copenhagen,Copenhagen,Copenhagensrack 15英国伦敦WC1E 6BT的高尔街16号Genève,deGenève大学,51 ch。des Millettes,1290 Versex,瑞士17 CNRS,IRAP,14 Avenue E. Belin,31400 Toulouse,法国18天津天文天体物理学中心,Tianjin师范大学,Binshuixida 393,300384 Tianjin,Tianjin,Prin