摘要 增强子-启动子环路模型长期以来一直主导着基因调控领域,其中增强子通过物理接触激活其靶基因。然而,由于存在替代机制的证据以及缺乏系统验证(主要是由于缺乏合适的实验技术),该模型的普遍性受到了质疑。在本研究中,我们提出了一种新的基于 MNase 的邻近连接方法,称为 MChIP-C,该方法可以在基因组范围内以单核小体分辨率测量蛋白质介导的染色质相互作用。通过应用 MChIP-C 研究 K562 细胞中以 H3K4me3 启动子为中心的相互作用,我们发现与基于限制性内切酶的 C 方法相比,它具有大大提高的分辨率和灵敏度。这使我们能够将 EP300 组蛋白乙酰转移酶和 SWI/SNF 重塑复合物确定为建立和/或维持增强子-启动子相互作用的潜在候选者。最后,利用已发表的 CRISPRi 筛选数据,我们发现大多数经过功能验证的增强子确实与其同源启动子发生物理相互作用,支持增强子-启动子环路模型。
摘要:在智能通信系统的领域中,其中5G/6G网络和物联网应用程序的无处不在需要强大的数据机密性,块和流密封机制的加密完整性起着关键作用。本文通过创新的替代盒(S-boxes)的创新方法着重于这些系统中加密强度的增强,这些方法在实现替换 - perm pormotnet网络中的混淆和扩散属性中是不可或缺的。这些特性对于挫败统计,差异,线性和其他形式的加密分析至关重要,并且在伪数的生成和加密哈希算法中同样至关重要。本文解决了具有所需加密属性的迅速产生随机S盒的挑战,考虑到现有生成算法的复杂性,这项任务尤其是艰巨的。我们深入研究攀岩算法,探索各种成本功能及其对以104的目标非线性生成S盒的计算复杂性的影响。我们的贡献在于提出一种新的成本函数,该功能显着降低了产生的复杂性,使迭代数量达到了50,000以下,以实现所需的S-Box。在智能通信环境的背景下,这种进步尤其重要,在智能通信环境中,安全性和性能之间的平衡至关重要。
人工智能 (AI) 有望助力人类繁荣、经济繁荣和可持续增长。得益于机器学习的进步、以更低的成本获得计算能力、数据可用性的提高以及数字设备的普及,AI 将使公共、私人和第三部门受益。AI 已成为一种日益增长的交互式、自主和自学代理资源,它可以执行原本需要人类智能和干预才能成功执行的任务 [1]。将任务委托给 AI 系统有助于提高一致性、提高效率并增加对服务或产品的访问。最近的估计表明,到 2030 年,AI 可能会使全球 GDP 增长约 15% [2]。AI 的积极影响不仅是经济方面的,也是社会方面的 [3]。例如,考虑人工智能在医疗保健领域的应用,其中人工智能驱动的图像识别可增强诊断服务,或在公共部门,人工智能用于通过更准确的预测来提高社区服务的质量 [4]。由于人工智能能够从大量甚至结构化程度较低的数据中得出推论,因此它是一种特别有用的工具,可以为复杂问题提供新的解决方案,例如实现联合国可持续发展目标 (SDG) [5]。
摘要:创伤性脊髓损伤(SCI)是一种威胁生命和改变生命的状况,导致感觉运动和自主性障碍使人衰弱。尽管创伤性SCI的临床管理取得了重大进展,但由于缺乏有效的疗法,许多患者继续遭受痛苦。对脊髓的初始机械损伤导致一系列二次分子过程和免疫,血管,神经胶质和神经元细胞种群中的细胞内信号传导级联反应,从而进一步损害受伤的脊髓。这些细胞内的级联反应呈现出令人鼓舞的翻译与治疗干预措施,因为它们在真核进化中的无处不在和保护性高。迄今为止,许多治疗剂已显示这些途径在改善SCI后恢复方面的直接或间接介入。然而,创伤性SCI的复杂,多方面和异质性的性质需要更好地阐明潜在的次级细胞内信号传导级联,以最大程度地减少脱靶效应并最大程度地提高有效性。转录和分子神经科学的最新进展为受伤的脊髓中这些途径提供了更仔细的表征。这篇叙事评论文章旨在调查MAPK,PI3K-AKT-MTOR,Rho-Rock,NF-κB和Jak-STAT信号级联,此外还提供了有关创伤性SCI后这些次级细胞内途径的参与和治疗潜力的全面概述。
2. 在本报告所述年度,数字化发展迅速,政府间和多方利益攸关方在确定数字化发展未来方向方面活动增多。全球数字契约的工作已取得进展,该契约将于 2024 年由大会审议,并将为未来峰会作出贡献。20 年后,大会将于 2025 年审查信息社会世界峰会的成果。联合国系统内外的许多其他论坛探讨了从网络安全到人工智能治理等长期存在和新兴问题。随着信息和通信技术 (ICT) 在国家和国际层面渗透到人类社会的各个方面,这些论坛所涵盖的问题范围每年都在扩大。数字化对每个公共政策领域都有重大影响,因此数字部门与其他领域相关人员之间的对话对于实现可持续发展来说比以往任何时候都更加重要。这种普及性带来了相关风险,包括如果数字基础设施因自然灾害或网络攻击而失效,将对整个社会构成威胁,从而影响社会秩序。应对数字化无处不在的机遇和风险,需要所有国家、所有利益相关方和所有行业的参与。
在当今时代,移动设备已成为我们日常生活中不可或缺的一部分,确保移动应用程序的安全性变得越来越重要。移动渗透测试是网络安全领域内的专门子场,在保护移动生态系统免受威胁不断发展的景观方面起着至关重要的作用。移动设备的普遍存在使它们成为网络犯罪分子的主要目标,并且通过移动应用程序获得的数据和功能使它们成为可保护的宝贵资产。移动渗透测试旨在确定移动应用程序和设备本身内的漏洞,弱点和潜在的漏洞。与通常关注网络和服务器安全性的传统渗透测试不同,移动渗透测试将移动平台带来的独特挑战中零。移动渗透测试是网络安全中的专业领域,是网络安全专家工具中的重要工具,可保护移动生态系统免受新兴威胁。本文介绍了移动渗透测试,强调了其重要性,包括用于Android和iOS平台的全面学习实验室,并突出显示了它与传统的渗透测试方法的明显不同。
用于低空遥感的 RPAS 技术和用于增强成像的微型传感器的蓬勃发展,导致了海洋生态应用的增加。然而,带有可见电磁波谱传感器的 RPAS 的普遍性可能会限制沿温带潮间带岩礁的生物海洋栖息地的精细测绘、监测和识别应用。在这里,我们使用低成本的 RPAS 结合多光谱传感器 (MicaSense® RedEdge™) 和基于对象的图像分析 (OBIA) 工作流程,在新西兰奥克兰怀特玛塔港制作了生物牡蛎礁的超高分辨率地图。结果表明,具有可见电磁波谱以外的光谱带逐渐增强了图像上的特征检测,并增加了在异质海洋生态系统中描绘目标特征的潜力。使用基于规则的分类技术提取目标特征,基于分割后的光谱特征,总体准确率为 83.9%,kappa 系数为 69.8%。使用附加光谱带可提高牡蛎礁栖息地测绘的光谱分辨率。高空间尺度监测和测绘浑浊的潮间带岩石礁带来了独特的挑战,但这些挑战可以通过在理想的气象和海洋条件下使用 RPAS 进行瞄准飞行来缓解。
摘要 — 卫星通信提供了在未覆盖和覆盖不足的区域提供服务连续性、服务无处不在和服务可扩展性的前景。然而,要实现这些好处,必须首先解决几个挑战,因为卫星网络的资源管理、网络控制、网络安全、频谱管理和能源使用比地面网络更具挑战性。同时,人工智能 (AI),包括机器学习、深度学习和强化学习,作为一个研究领域一直在稳步发展,并在包括无线通信在内的各种应用中取得了成功的结果。特别是,人工智能在各种卫星通信方面的应用已经显示出巨大的潜力,包括波束跳跃、抗干扰、网络流量预测、信道建模、遥测挖掘、电离层闪烁检测、干扰管理、遥感、行为建模、天空地一体化和能源管理。因此,本文概述了人工智能、其各种子领域及其最新算法。然后讨论了卫星通信系统各个方面面临的若干挑战,并介绍了基于人工智能的拟议和潜在解决方案。最后,对该领域进行了展望,并提出了未来的步骤。
稳定的扩散从描述性文本彻底改变了图像创建。GPT-2,GPT-3(.5)和GPT-4在各种语言任务中表现出惊人的表现。chatgpt向公众介绍了此类语言模型。现在很明显,大型语言模型(LLMS)将留在这里,并且会在整个在线文本和图像的生态系统中产生巨大的变化。在本文中,我们考虑未来可能会有什么。一旦LLM在网上找到大部分语言,GPT- {N}会发生什么?我们发现,在训练中使用模型生成的内容会导致不可逆的缺陷,其中原始内容分布的尾巴消失了。我们将这种效果称为模型崩溃1,并表明它可以在变异自动编码器,高斯混合模型和LLM中发生。我们建立了这种现象背后的理论直觉,并在所有学到的生成模型中描绘了它的普遍性。我们证明,如果我们要维持从网络上刮除的大规模数据培训的好处,则必须认真对待它。的确,在LLMS在从Internet爬网的数据中产生的内容的存在下,收集到有关人类与系统的真正人类互动的数据的价值将变得越来越有价值。
信号换能器和转录3(STAT3)的激活因子在癌症的进展中的关键作用被认可,在癌症的进展中,它经常被上调或组成性地过度活化,有助于肿瘤细胞的增殖,生存和迁移,以及血管生成,以及血管生成以及抗肿瘤免疫的血管生成和抑制。鉴于癌症中STAT3活性失调的无处不在,长期以来,它一直被认为是抗癌疗法发展的极具吸引力的靶标。 然而,靶向STAT3的努力已被证明是特别具有挑战性的,这可能是由于转录因子缺乏目标酶活性,并且在历史上被认为是“不可能的”。 针对STAT3的小分子抑制剂受到选择性和效力不足的限制。 最近,已经开发出选择性靶向STAT3蛋白降解的治疗方法,提供了不依赖于上游途径或直接竞争抑制STAT3蛋白的新型策略。 在这里,我们回顾了这些新兴方法,包括靶向嵌合体(Protac)剂的STAT3蛋白水解以及化学稳定的反义分子的临床前和临床研究,例如临床剂AZD9150。 这些治疗策略可能会牢固地降低致癌STAT3的细胞活性,并克服较不选择小分子的历史局限性。鉴于癌症中STAT3活性失调的无处不在,长期以来,它一直被认为是抗癌疗法发展的极具吸引力的靶标。靶向STAT3的努力已被证明是特别具有挑战性的,这可能是由于转录因子缺乏目标酶活性,并且在历史上被认为是“不可能的”。针对STAT3的小分子抑制剂受到选择性和效力不足的限制。最近,已经开发出选择性靶向STAT3蛋白降解的治疗方法,提供了不依赖于上游途径或直接竞争抑制STAT3蛋白的新型策略。在这里,我们回顾了这些新兴方法,包括靶向嵌合体(Protac)剂的STAT3蛋白水解以及化学稳定的反义分子的临床前和临床研究,例如临床剂AZD9150。这些治疗策略可能会牢固地降低致癌STAT3的细胞活性,并克服较不选择小分子的历史局限性。
