作者:Naoki Kubo*,Ryuji Uehara,Shuhei Uemura,Hiroaki Ohishi,Kenjiro Shirane和Hiroyuki
这项工作得到了(i)为日本促进科学研究奖学金协会(Kakenhi Kiban A,S。Kurosawa)授予的赠款(ii)高级测量和分析开发计划(Sentan),日本科学技术机构(JST),(JST),(JST),(ii)通过目标技术转移计划,(ii)通过目标技术转移计划(jurs)(kure and-ders-ders&d)(s。项目旨在促进地震,经济,贸易和工业部(METI),(V)支持行业计划,Meti和(VI)新化学技术进步协会的创新。此外,我们要感谢以下人员的支持:Yoshihihiro Nakamura先生在多学科高级材料研究所(IMRAM),TOHOKU UNIVESRION和MURAKAMI YOSHIHIRO先生,Hiroshi Uemura先生,Hiroshi Uemura先生,Megumi Toguchi女士和Megumi Sasaki in Imr。
p17自我传播高温合成产生的TIB2的PARK血浆烧结,Ahmet Turan 1(Yeditepe University,Yeditepe University,türkiye1)Filiz Cinar Sahin 2,Gultekin Goller 2,Gultekin Goller 2,OnuralpYücel2 p18 DFT 2 p18 dft分析了氢诱导的NAOK的NAOKON NAOK的氢化型(βBorion)(βbor的结构转化(日本1)Tadashi Ogitsu 2,Takanobu Hiroto 3,Wataru Hayami 3,Kohei Soga 4,Kaoru Kimura 5
东京——2024 年 9 月 3 日——全球领先的在线游戏公司 NEXON 株式会社 (Nexon) (3659.TO) 宣布了一项中期增长战略,包括财务目标和新的股东回报政策。Nexon 总裁兼首席执行官李正勋和首席财务官上村史郎于 9 月 3 日在东京涩谷举行的公司资本市场简报会上宣布了这一消息。Nexon 总裁兼首席执行官李正勋表示:“Nexon 高度先进的实时游戏运营能力在过去 30 年里提供了稳定(尽管不是线性)的增长。在此基础上,我们将围绕 IP 增长计划集中我们的组织结构,该计划可以滚雪球式地发展我们现有的 IP 并开发新的大片。”Nexon 首席财务官上村史郎表示:“今天的简报会旨在帮助我们的投资者了解 Nexon 如何渴望在 2027 年将我们的年收入增长到 7500 亿日元,营业收入增长到 2500 亿日元。” “我们制定了新的股东回报政策,即在 2024 年下半年将营业收入 1 的回报率提高到上年的 33% 以上,并将半年股息翻一番。此外,我们设定的最低 ROE 目标为 10%,最高增长潜力为 15%。” IP 增长计划 Nexon 新推出的 IP 增长计划是一项垂直增长战略,通过在新平台和新市场中引入新内容,重振和扩展成熟的大作,如《地下城与勇士》和《冒险岛》等。该战略包括超本地化,这一概念承认市场之间的文化差异,并部署团队定制内容以满足每个地区独特的玩家偏好。此外,横向增长计划将专注于开发其他 Nexon 游戏和系列的新大作,如《洛奇》,以及正在开发的新游戏,如《ARC Raiders》。
在生命的前六个月中,在前十年中,视觉发展一直持续。足月新生儿可能会呈现视觉固定,但是遵循目标的能力通常仅在两个月大时才存在。颜色歧视和对比敏感性存在,但在新生儿中发育不良。1眼神接触是早期亲子互动的重要步骤,缺乏目光接触或明显的视觉行为应提醒父母和临床医生。2如果婴儿在生命的前两个月内不具有视觉固定和跟踪,则可以将他们转介给眼科医生,以评估延迟视觉成熟(DVM)。这些孩子可能还有其他问题,例如早产,全身性疾病或眼睛的结构异常,但否则也可能是正常的。1 Uemura等人已经提出了DVM的详细分类。3将这些孩子分为三组:第一组包括没有异常的孩子;第二个包括发育延迟的人;第三个包括眼异常。
1。Paolicelli,R.C.,Sierra,A.,Stevens,B.,Tremblay,M.-E.,Aguzzi,A.,Ajami,B.,Amit,I.,Audinat,E.,Bechmann,I.,Bennett,M。等。 (2022)。 小胶质细胞状态和命名法:在其十字路口的领域。 Neuron 110,3458-3483。 https://doi.org/10.1016/j.neuron.2022.10.020。 2。 巴克莱(2024)。 免疫。 3。 Deczkowska,A. (2018)。 与疾病相关的小胶质细胞:神经退行性的通用免疫传感器。 单元格173,1073-1081。 https://doi.org/10.1016/j.cell.2018.05.003。 4。 lan,Y.,Zhang,X.,Liu,S.,Guo,C.,Jin,Y.,Li,H.,Wang,L.,Zhao,J.,Hao,Y.,Y.,Li,Z.等。 (2024)。 SPP1表达的命运图揭示了脑损伤后与疾病相关的小胶质细胞样细胞的年龄依赖性可塑性。 免疫57,349-363.E349。 https://doi.org/10.1016/j.immuni.2024.01.008。 5。 Rachmian,N.,Medina,S.,Cherqui,U.,Akiva,H.,Deitch,D.,Edilbi,D.,Croese,T.,Salame,T.M.,Ramos,J.M.P.,Cahalon,L。等。 (2024)。 鉴定衰老和阿尔茨海默氏病小鼠大脑中衰老,表达小胶质细胞的鉴定。 nat Neurosci。 10.1038/S41593-024-01620-8。 6。 Matsudaira,T.,Nakano,S.,Konishi,Y.,Kawamoto,S.,Uemura,K.,Kondo,T.,Sakurai,K.,Ozawa,T. (2023)。 在小鼠衰老期间诱导白质小胶质细胞的细胞衰老,并加剧神经素浮游生物表型。Paolicelli,R.C.,Sierra,A.,Stevens,B.,Tremblay,M.-E.,Aguzzi,A.,Ajami,B.,Amit,I.,Audinat,E.,Bechmann,I.,Bennett,M。等。(2022)。小胶质细胞状态和命名法:在其十字路口的领域。Neuron 110,3458-3483。 https://doi.org/10.1016/j.neuron.2022.10.020。2。巴克莱(2024)。免疫。3。Deczkowska,A. (2018)。 与疾病相关的小胶质细胞:神经退行性的通用免疫传感器。 单元格173,1073-1081。 https://doi.org/10.1016/j.cell.2018.05.003。 4。 lan,Y.,Zhang,X.,Liu,S.,Guo,C.,Jin,Y.,Li,H.,Wang,L.,Zhao,J.,Hao,Y.,Y.,Li,Z.等。 (2024)。 SPP1表达的命运图揭示了脑损伤后与疾病相关的小胶质细胞样细胞的年龄依赖性可塑性。 免疫57,349-363.E349。 https://doi.org/10.1016/j.immuni.2024.01.008。 5。 Rachmian,N.,Medina,S.,Cherqui,U.,Akiva,H.,Deitch,D.,Edilbi,D.,Croese,T.,Salame,T.M.,Ramos,J.M.P.,Cahalon,L。等。 (2024)。 鉴定衰老和阿尔茨海默氏病小鼠大脑中衰老,表达小胶质细胞的鉴定。 nat Neurosci。 10.1038/S41593-024-01620-8。 6。 Matsudaira,T.,Nakano,S.,Konishi,Y.,Kawamoto,S.,Uemura,K.,Kondo,T.,Sakurai,K.,Ozawa,T. (2023)。 在小鼠衰老期间诱导白质小胶质细胞的细胞衰老,并加剧神经素浮游生物表型。Deczkowska,A.(2018)。与疾病相关的小胶质细胞:神经退行性的通用免疫传感器。单元格173,1073-1081。 https://doi.org/10.1016/j.cell.2018.05.003。4。lan,Y.,Zhang,X.,Liu,S.,Guo,C.,Jin,Y.,Li,H.,Wang,L.,Zhao,J.,Hao,Y.,Y.,Li,Z.等。(2024)。SPP1表达的命运图揭示了脑损伤后与疾病相关的小胶质细胞样细胞的年龄依赖性可塑性。免疫57,349-363.E349。https://doi.org/10.1016/j.immuni.2024.01.008。5。Rachmian,N.,Medina,S.,Cherqui,U.,Akiva,H.,Deitch,D.,Edilbi,D.,Croese,T.,Salame,T.M.,Ramos,J.M.P.,Cahalon,L。等。 (2024)。 鉴定衰老和阿尔茨海默氏病小鼠大脑中衰老,表达小胶质细胞的鉴定。 nat Neurosci。 10.1038/S41593-024-01620-8。 6。 Matsudaira,T.,Nakano,S.,Konishi,Y.,Kawamoto,S.,Uemura,K.,Kondo,T.,Sakurai,K.,Ozawa,T. (2023)。 在小鼠衰老期间诱导白质小胶质细胞的细胞衰老,并加剧神经素浮游生物表型。Rachmian,N.,Medina,S.,Cherqui,U.,Akiva,H.,Deitch,D.,Edilbi,D.,Croese,T.,Salame,T.M.,Ramos,J.M.P.,Cahalon,L。等。(2024)。鉴定衰老和阿尔茨海默氏病小鼠大脑中衰老,表达小胶质细胞的鉴定。nat Neurosci。10.1038/S41593-024-01620-8。6。Matsudaira,T.,Nakano,S.,Konishi,Y.,Kawamoto,S.,Uemura,K.,Kondo,T.,Sakurai,K.,Ozawa,T.(2023)。在小鼠衰老期间诱导白质小胶质细胞的细胞衰老,并加剧神经素浮游生物表型。支持6,665。10.1038/S4203-023-05027-27。of Scheper,S.,GE,J.Z.,G.,Ferreira,L.S.,Garceau,D.,Toomey,C.E.,Socolova,D.,Rueda-Carrasco,J.,Shin,Shin,Shin,Shin,S.-H.(2023)。特定于Andsnaptics的特定补充和切片,并在阿尔茨海默氏症小鼠模型中访问SPP1。新自然26,406-410.1038/S41593-023-01257-Z。8。Silvin,A.,Uderhardt,St.,St.,C。,来自Mesquita,St.,Yang,K.,Girls,L.,Mulder,K.,Eyal,D.,Liu,Z.,Bridlance,C。和Al。(2022)。Michroglia和神经退行性的分裂。免疫55,1448-1465。pm。https://doi.org/10.1016/j.immuni.2022.07.0 9。 van Hove,H.,Martens,L.,I.,Vlaminck,K.,Pombo Antunes,A.R.,Prijck,S.,N. (2019)。 大脑巨噬细胞的单细胞图集只有超越身份才能活着。 nat Neurosci 22,1021-1 10.1038/s41593-019-0393-4。 10。 测试,A。,Weiner,A。和Friends,I。 (2020)。 路径信号通路。 这个181,1207-1 https://doi.org/1016/j.cell.2020.05.0https://doi.org/10.1016/j.immuni.2022.07.09。van Hove,H.,Martens,L.,I.,Vlaminck,K.,Pombo Antunes,A.R.,Prijck,S.,N.(2019)。大脑巨噬细胞的单细胞图集只有超越身份才能活着。nat Neurosci 22,1021-110.1038/s41593-019-0393-4。10。测试,A。,Weiner,A。和Friends,I。(2020)。路径信号通路。这个181,1207-1 https://doi.org/1016/j.cell.2020.05.0
胃癌和结直肠癌是全球范围内的重要疾病,具有高度的分子和表型异质性(Smyth et al.,2020)。胃癌可由多种基因和表观遗传突变引起,幽门螺杆菌也是重要的致病因素(Uemura et al.,2001)。肿瘤微环境对胃癌患者的生存和治疗反应有很大影响(Quail and Joyce,2013)。目前,胃癌的早期诊断仍然存在问题,因为临床症状通常仅出现在癌症发展的晚期阶段,这大大限制了治疗选择(Maconi et al.,2008)。结直肠癌是全球第四大致命癌症,其病因包括饮食习惯、高龄和吸烟(Dekker et al.,2019)。结直肠癌通常在手术切除后进行辅助治疗。但随后癌症复发和转移的风险仍然很高,而且往往与化疗、放疗等传统疗法的耐药性有关(Jänne and Mayer,2000)。由于胃癌和结直肠癌的发病率和死亡率很高,研究新的靶向治疗方法迫在眉睫。最近的研究表明,外泌体可以作为靶向药物载体。外泌体是由大多数细胞分泌的微小内吞囊泡(Théry et al.,2002),其直径在40至100纳米之间。外泌体被发现能够将生物活性分子或其他物质运送到特定的受体细胞进行细胞间通讯(图1)。越来越多的研究表明,外泌体是重要的纳米材料,可以通过细胞间传递调控重要的生物学行为(Yang et al.,2019)。它们还参与肿瘤细胞凋亡、癌细胞增殖和迁移、肿瘤微环境调节和血管生成,在包括癌症在内的许多疾病的发病机制中发挥着重要作用(Nabariya et al., 2020)。由于这些特性,外泌体也可用作癌症治疗中有效的靶向药物递送系统。
Johannes WM Osterrieth, James Rampersad, David Madden, Nakul Rampal, Luka Skoric, Bethany Connolly, Mark D. Allendorf, Vitalie Stavila, Jonathan L. Snider, Rob Ameloot, João Marreiros, Conchi Ania, Diana Azevedo, Enrique Vilarrasa-Garcia, Xinca F, Buan, Buan, Hanze, Hanze, Neil. R. Champness, Sarah L. Griffin, Banglin Chen, Rui-Biao Lin, Benoit Coasne, Seth Cohen, Jessica C. Moreton, Yamil J. Colón, Linjiang Chen, Rob Clowes, François-Xavier Coudert, Yong Cui, Bang Hou, Deanna M. D'Alessandro, Payne Dohen, Doen, Doe, Sun, Christian. Michael Thomas Huxley, Jack D. Evans, Paolo Falcaro, Raffaele Ricco, Omar Farha, Karam B. Idrees, Timur Islamoglu, Pingyun Feng, Huajun Yang, Ross S. Forgan, Dominic Bara, Shuhei Furukawa, Eli Sanchez, Jorge Gascon, Selvedin Telalović, Sukho Khamed, Khammed Murji, Murji Murji, Matthew R. Saum. diq, Patricia Horcajada, Pablo Salcedo-Abraira, Katsumi Kaneko, Radovan Kukobat, Jeff Kenvin, Seda Keskin, Susumu Kitagawa, Ken-ichi Otake, Ryan P. Lively, Stephen JA DeWitt, Phillip Llewellyn, Bettina V. Lotsch, Sebastian T. Ender, Alexander M. Pati M. Pati M. al, Javier García-Martínez, Noemi Linares, Daniel Maspoch, Jose A. Suárez del Pino, Peyman Moghadam, Rama Oktavian, Russel E. Morris, Paul S. Wheatley, Jorge Navarro, Camille Petit, David Danaci, Matthew J. Rosseinsky, Alexandros P., Kat Schunder, Martin Xu, Sergeant, Sergian, Sergeant. s Mouchaham, David S. Sholl, Raghuram Thyagarajan, Daniel Siderius, Randall Q. Snurr, Rebecca B. Goncalves, Shane Telfer, Seok J. Lee, Valeska P. Ting, Jemma L. Rowlandson, Takashi Uemura, Tomoya Iiyuka, Monique A. van der Revere, David Revere, Speed, M.J. and Lamaire, Krista S. Walton, Lukas W. Bingel, Stefan Wuttke, Jacopo Andreo, Omar Yaghi, Bing Zhang, Cafer T. Yavuz, Thien S. Nguyen, Felix Zamora, Carmen Montoro, Hongcai Zhou, Angelo Kirchon, and David Fairen-Jimenez*
Johannes WM Osterrieth, James Rampersad, David Madden, Nakul Rampal, Luka Skoric, Bethany Connolly, Mark D. Allendorf, Vitalie Stavila, Jonathan L. Snider, Rob Ameloot, João Marreiros, Conchi Ania, Diana Azevedo, Enrique Vilarrasa-Garcia, Xinca F, Buan, Buan, Hanze, Hanze, Neil. R. Champness, Sarah L. Griffin, Banglin Chen, Rui-Biao Lin, Benoit Coasne, Seth Cohen, Jessica C. Moreton, Yamil J. Colón, Linjiang Chen, Rob Clowes, François-Xavier Coudert, Yong Cui, Bang Hou, Deanna M. D'Alessandro, Payne Dohen, Doen, Doe, Sun, Christian. Michael Thomas Huxley, Jack D. Evans, Paolo Falcaro, Raffaele Ricco, Omar Farha, Karam B. Idrees, Timur Islamoglu, Pingyun Feng, Huajun Yang, Ross S. Forgan, Dominic Bara, Shuhei Furukawa, Eli Sanchez, Jorge Gascon, Selvedin Telalović, Sukho Khamed, Khammed Murji, Murji Murji, Matthew R. Saum. diq, Patricia Horcajada, Pablo Salcedo-Abraira, Katsumi Kaneko, Radovan Kukobat, Jeff Kenvin, Seda Keskin, Susumu Kitagawa, Ken-ichi Otake, Ryan P. Lively, Stephen JA DeWitt, Phillip Llewellyn, Bettina V. Lotsch, Sebastian T. Ender, Alexander M. Pati M. Pati M. al, Javier García-Martínez, Noemi Linares, Daniel Maspoch, Jose A. Suárez del Pino, Peyman Moghadam, Rama Oktavian, Russel E. Morris, Paul S. Wheatley, Jorge Navarro, Camille Petit, David Danaci, Matthew J. Rosseinsky, Alexandros P., Kat Schunder, Martin Xu, Sergeant, Sergian, Sergeant. s Mouchaham, David S. Sholl, Raghuram Thyagarajan, Daniel Siderius, Randall Q. Snurr, Rebecca B. Goncalves, Shane Telfer, Seok J. Lee, Valeska P. Ting, Jemma L. Rowlandson, Takashi Uemura, Tomoya Iiyuka, Monique A. van der Revere, David Revere, Speed, M.J. and Lamaire, Krista S. Walton, Lukas W. Bingel, Stefan Wuttke, Jacopo Andreo, Omar Yaghi, Bing Zhang, Cafer T. Yavuz, Thien S. Nguyen, Felix Zamora, Carmen Montoro, Hongcai Zhou, Angelo Kirchon, and David Fairen-Jimenez*