• 这是基于自制低温太赫兹扫描近场光学显微镜 (SNOM) 的新进展,它能够探测太赫兹频率范围内材料的纳米电磁响应。本研究可视化了电子-光子准粒子的传播,并揭示了狄拉克流体中的强电子相互作用。手稿现已发布在 arXiv (arXiv:2311.11502) 上 • 在本研究中,我们测量了单层石墨烯中移动极化子波包的动力学。等离子体极化子的运动记录在具有超精细时空像素的 (1+1)d 图上。 • 我们开发了基于石墨烯交流电导率计算极化子群速度和极化子寿命的理论模型。这些模型完全捕捉了不同温度下费米液体和狄拉克流体状态下的实验观测结果。 • 我们对极化腔模式进行了温度依赖性研究,并证明了在 55K 下极化寿命长达 5 皮秒。 • 我们研究了狄拉克流体中的电子相互作用如何改变极化动力学。极化重正化在电荷中性点最为明显,其中等离子体极化子由相同密度的热激活电子和空穴维持。重正化表现为群速度和极化寿命的降低,这两者都取决于载流子密度。我们能够定量提取石墨烯的电子散射率和精细结构常数,这可作为石墨烯中电子相互作用强度的量度。
背景与目标:使用机器学习来进行空气污染建模正在迅速增加。我们对比较统计和机器学习模型的研究进行了系统的综述,该研究预测了环境氮二氧化氮(NO 2),超细颗粒(UFPS)和黑碳(BC)的时空变化,以确定哪种情况以及在哪种情况下,机器学习是否会产生更准确的预测。方法:截至2024年6月13日,搜索了科学和Scopus的网络。所有记录均由两个受依赖的审阅者筛选。在最佳统计和机器学习方法之间的确定系数(R 2)和均方根误差(RMSE)之间的差异进行了比较。结果:包括46个模型比较的38项研究(第2号,UFPS为30,为BC为8)。线性非规范方法和随机森林最常使用。机器学习在34个比较中优于统计模型。最佳机器学习和统计模型之间的R 2中的平均差异(95%置信区间)分别为0.12(0.08、0.17)和20%(11%,29%)。基于树的方法在17个多模型比较中的12个中表现最好。非线性或正则回归方法仅在12个比较中使用,并提供了与机器学习方法相似的性能。结论:这项系统的综述表明,机器学习方法,尤其是基于树的方法,可能优于线性非验证方法,用于预测2号,UFP和BC的环境浓度。需要使用非线性,正则化和更广泛的机器学习方法的其他比较研究来确认其相对性能。未来的空气污染研究也将受益于对方法和结果的更明确和标准化的报告。
自2024年12月17日以来Starck Tungsten Powders(“ HCS”)是三菱材料的集团公司。在此之前,该公司是Masan高科技材料集团的成员。HCS提供高性能的钨化学品,钨金属和碳化物粉,铸钨碳化物和特殊的碳化物粉末。这些产品是针对客户规格量身定制的,是针对机械工程和工具制造,汽车和能源行业,航空业和化学工业制造的。我们的客户从最高和一致的质量中受益,以及从综合产品组合的Ultrafine到粗粒大小。根据“ OECD尽职调查指南,对受冲突影响和高风险地区的矿物的负责供应链”的“经合组织的尽职调查指南”称为潜在的“冲突矿物”。这些准则不仅参考冲突,而是滥用人权,例如现代奴隶制和人口贩运。《 2015年英国现代奴隶制法》(“法案”)构成罪行,并对在英国提供商品和服务的企业施加义务,每年都会在他们采取的步骤中报告其运营和供应链,没有人口贩运和奴隶制。在这里,我们参考我们的年度经合组织步骤5报告。HCS不会在其任何操作中都不会使用强制,契约或非自愿劳动,也不会有意利用任何涉嫌这样做的供应商。HCS致力于高道德标准。此外,我们自己的审计师进行了负责任供应链管理(RSCM)的审核。HCS维护强大的供应链管理系统,以确保通过定期培训,审查,验证,审计和证明其原材料以一种对社会负责的方式采购,而不支持那些从事人口贩运的人。HCS是Ti-CMC,RMI和ITSCI的成员,确保我们的原材料供应商(滥用人权可能是一个重大风险)符合经合组织的尽职调查指南。HCS由独立的第三方定期审核,因此被证明为“一致的冶炼厂”。在最新的审计中,独立审核员还得出结论,HCS的RSCM完全符合相关要求。在2023年,德国“ Lieferkettensorgfaltspflichtengesetz”(LKSG;护理供应链义务法)生效。由于其尺寸,H.C。 Starck Tungsten Powders并不是LKSG含义的义务公司。尽管如此,我们知道我们在供应链中的责任,因此已致力于在适用于我们的情况下遵守法律的要求。例如,这是根据LKSG的风险分析。MHT行为准则指出,公司对维护所有国际公认的人权的承诺,例如联合国指导商业和人权原则。更具体地说,HCS致力于确保其运营和供应链没有人口贩运和奴隶制。在我们的RSCM中,HCS监视和审核高风险领域和潜在受影响的人群。此语句(含量HCS还要求其供应商采取所有必要的步骤,以证明其运营和供应链严格符合这些承诺。实际的经合组织步骤5报告是根据该法案第54(1)条制作的,构成了截至2024年12月的财政年度的奴隶制和人口贩运声明。
时间倒转对称性的kagome超导性作者:汉宾·邓(Hanbin Deng)1 *,朱wei liu 1 *,Z。Guguchia2 *,Tianyu Yang 1 *,Jinjin liu 3,4 * Frédéric Bourdarot 9 , Xiao-Yu Yan 1 , Hailang Qin 7 , C. Mielke III 2 , R. Khasanov 2 , H. Luetkens 2 , Xianxin Wu 10 , Guoqing Chang 6 , Jianpeng Liu 11 , Morten Holm Christensen 12 , Andreas Kreisel 12 , Brian Møller Andersen 12 , Wen Huang 13 , Yue Zhao 1 ,Philippe Bourges 8,Yugui Yao 3,4,Pengcheng Dai 5,Jia-Xin Yin 1,7†隶属关系:1 Southern科学技术大学物理系,中国广东,深圳。2个宇宙旋转光谱实验室,保罗·施雷尔学院(CH-5232),瑞士维利根PSI。3量子物理中心,高级光电量子体系结构和测量(MOE)的主要实验室(MOE),北京理工学院,中国北京理工学院物理学院。4北京纳米植物和超细光电系统的北京关键实验室,中国北京理工学院。5美国休斯敦莱斯大学物理与天文学系77005,美国。6物理学和应用物理学,新加坡Nanyang Technological University的物理和数学科学学院,新加坡637371。7广东港量子科学中心大湾大湾地区(广东),中国深圳。8帕里斯 - 萨克莱大学,CNRS-CEA,LaboratoireLéonBrillouin,91191,法国Gif Sur Yvette,法国。9UniversitéGrenoble Alpes,CEA,INAC,MEM MDN,F-38000 Grenoble,法国。*这些作者为这项工作做出了同样的贡献。10理论物理学的CAS关键实验室,理论物理研究所,中国科学院,中国北京。11上海大学物理科学技术学院,上海2011年,中国。12尼尔斯·博尔研究所,哥本哈根大学,丹麦哥本哈根DK-2200。13深圳量子科学与工程研究所,南方科学技术大学,深圳518055,中国广东。 †相应的作者。 电子邮件:zhiweiwang@bit.edu.cn; yinjx@sustech.edu.cn超导性和磁性是拮抗量子物质,而在沮丧的局限性系统中,它们长期以来一直在考虑它们的交织。 在这项工作中,我们利用扫描隧道显微镜和MUON旋转共振来发现Kagome Metal CS(V,TA)3 SB 5中的时间反转对称性超导性,在其中Cooper配对表现出磁性磁性,并由其调节。 在磁道通道中,我们观察到完全差距超导状态下的自发内部磁性。 在反磁场的扰动下,我们检测到Bogoliubov Quasi粒子在圆形载体上的时间反转不对称干扰。 在该矢量中,配对差距自发调节,这与在点矢量处发生的成对密度波不同,并且与时间反向对称性破坏的理论提议一致。 内部磁性,Bogoliubov准颗粒和配对调制之间的相关性为时间反向对称性的Kagome超导性提供了一系列实验线索。13深圳量子科学与工程研究所,南方科学技术大学,深圳518055,中国广东。†相应的作者。电子邮件:zhiweiwang@bit.edu.cn; yinjx@sustech.edu.cn超导性和磁性是拮抗量子物质,而在沮丧的局限性系统中,它们长期以来一直在考虑它们的交织。 在这项工作中,我们利用扫描隧道显微镜和MUON旋转共振来发现Kagome Metal CS(V,TA)3 SB 5中的时间反转对称性超导性,在其中Cooper配对表现出磁性磁性,并由其调节。 在磁道通道中,我们观察到完全差距超导状态下的自发内部磁性。 在反磁场的扰动下,我们检测到Bogoliubov Quasi粒子在圆形载体上的时间反转不对称干扰。 在该矢量中,配对差距自发调节,这与在点矢量处发生的成对密度波不同,并且与时间反向对称性破坏的理论提议一致。 内部磁性,Bogoliubov准颗粒和配对调制之间的相关性为时间反向对称性的Kagome超导性提供了一系列实验线索。电子邮件:zhiweiwang@bit.edu.cn; yinjx@sustech.edu.cn超导性和磁性是拮抗量子物质,而在沮丧的局限性系统中,它们长期以来一直在考虑它们的交织。在这项工作中,我们利用扫描隧道显微镜和MUON旋转共振来发现Kagome Metal CS(V,TA)3 SB 5中的时间反转对称性超导性,在其中Cooper配对表现出磁性磁性,并由其调节。在磁道通道中,我们观察到完全差距超导状态下的自发内部磁性。在反磁场的扰动下,我们检测到Bogoliubov Quasi粒子在圆形载体上的时间反转不对称干扰。在该矢量中,配对差距自发调节,这与在点矢量处发生的成对密度波不同,并且与时间反向对称性破坏的理论提议一致。内部磁性,Bogoliubov准颗粒和配对调制之间的相关性为时间反向对称性的Kagome超导性提供了一系列实验线索。
[J18] Ware LG、Suzuki DH、Cordero ZC †。“定向凝固双晶中弯曲晶界的热力学稳定性和运动学可达性”,材料科学杂志,55:8564–8575 (2020)。[J17] Moustafa AR、Durga A、Lindwall G、Cordero ZC †。“用于设计增材制造功能梯度金属的 Scheil 三元投影 (STeP) 图”,增材制造,32:101008 (2020)。[J16] Poole LL、Gonzales M、French MR、Yarberry WA、Moustafa AR、Cordero ZC †。 “PrintCast A356/316L 复合材料的超高速冲击”,国际冲击工程杂志,136: 103407 (2020)。[J15] Ward AA、Cordero ZC †。“多材料层压板超声波增材制造过程中的结生长和相互扩散”,Scripta Materialia,177: 101-105 (2020)。[J14] Carazzone JR、Bonar MD、Baring HW、Cantu MA、Cordero ZC †。“约束烧结中开裂的原位观察”,美国陶瓷学会杂志,102:602-610 (2019)。[J13] Ward AA、Zhang Y、Cordero ZC †。 “超声波点焊和超声波增材制造中的结生长”,Acta Materialia,158: 393-406 (2018)。[J12] Moustafa AR、Dinwiddie RB、Pawlowski AE、Splitter DA、Shyam A、Cordero ZC †。“介观结构和孔隙率对增材制造金属复合材料热导率的影响”,Additive Manufacturing,22: 223-229 (2018)。[J11] Ware LG、Suzuki DH、Wicker KJ、Cordero ZC †。“定向凝固双晶和三晶中的晶界操控”,Scripta Materialia,152: 98-101 (2018)。[J10] Ward AA、French MR、Leonard DN、Cordero ZC †。 “纳米晶合金超声波焊接过程中的晶粒生长”,材料加工技术杂志,254:373-382 (2018)。[J9] Pawlowski AE*、Cordero ZC* †、French MR、Muth TR、Dinwiddie RB、Carver KR、Shyam A、Elliott AM、Splitter DA。“通过熔体渗透增材制造预制件生产耐损伤金属复合材料”,材料与设计,127:346-351 (2017)。* = 作者贡献相同[J8] Cordero ZC †、Siddel DH、Peter WH、Elliott AM。“通过青铜渗透增强铁质粘合剂喷射 3D 打印部件的强度”,增材制造,15:87-92 (2017)。 [J7] Cordero ZC † 、Dinwiddie RB、Immel D、Dehoff RR。“电子束增材制造过程中烟囱孔的成核和生长”,材料科学杂志,52:3429-3435 (2017)。[J6] Cordero ZC † 、Meyer III HM、Nandwana P、Dehoff RR。“电子束增材制造过程中的粉末床充电”,Acta Materialia,124:437-445 (2017)。[J5] Cordero ZC 、Knight BE、Schuh CA †。“Hall-Petch 效应六十年——纯金属晶粒尺寸强化研究综述”,国际材料评论,61:495-512 (2016)。 [J4] Cordero ZC、Carpenter RR、Schuh CA、Schuster BE†,“超细晶粒钨合金的亚尺度弹道测试”,国际冲击工程杂志,91:1-5 (2016)。[J3] Huskins EL、Cordero ZC、Schuh CA、Schuster BE†。“粉末微柱压缩测试”,材料科学杂志,50:7058-7063 (2015)。
1。P. Baumann,F。E. Benson,S。C. West,Human Rad51蛋白在体外促进ATP依赖性同源配对和链转移反应。Cell 87,757-766(1996)。 2。 F. E. Benson,A。Stasiak,S。C。West,人类Rad51蛋白的纯化和表征,大肠杆菌的类似物。 EMBO J 13,5764-5771(1994)。 3。 y。 Sun,T。J. McCorvie,L。A. Yates,X。Zhang,同源重组的结构基础。 单元格。 mol。 生命科学。 77,3-18(2020)。 4。 D. K. Bishop,RecA同源物DMC1和RAD51相互作用,在减数分裂染色体突触之前形成多个核复合物。 Cell 79,1081-1092(1994)。 5。 A. Carver,X。Zhang,Rad51细丝动力学及其拮抗调节剂。 Semin Cell Dev Biol 113,3-13(2020)。 6。 Y. W. Chan,S。C. West,一种由同源重组产生的新的超级后期桥。 细胞周期17,2101-2109(2018)。 7。 A. Piazza,W。D. Wright,W.-D。海耶尔(Heyer),多侵略是诱导染色体重排的重组副产物。 单元格170,760-773.E715(2017)。 8。 K. Schlacher,H。Wu,M。Jasin,一种独特的复制叉保护途径将fanconi贫血肿瘤抑制剂连接到RAD51-BRCA1/2。 癌细胞22,106-116(2012)。 9。 S. Tye,G。E。Ronson,J。R。Morris,道路上的叉子:同源重组和停滞的复制叉保护部分。 Semin Cell Dev Biol 113,14-26(2021)。Cell 87,757-766(1996)。2。F. E. Benson,A。Stasiak,S。C。West,人类Rad51蛋白的纯化和表征,大肠杆菌的类似物。EMBO J 13,5764-5771(1994)。3。y。Sun,T。J. McCorvie,L。A. Yates,X。Zhang,同源重组的结构基础。单元格。mol。生命科学。77,3-18(2020)。 4。 D. K. Bishop,RecA同源物DMC1和RAD51相互作用,在减数分裂染色体突触之前形成多个核复合物。 Cell 79,1081-1092(1994)。 5。 A. Carver,X。Zhang,Rad51细丝动力学及其拮抗调节剂。 Semin Cell Dev Biol 113,3-13(2020)。 6。 Y. W. Chan,S。C. West,一种由同源重组产生的新的超级后期桥。 细胞周期17,2101-2109(2018)。 7。 A. Piazza,W。D. Wright,W.-D。海耶尔(Heyer),多侵略是诱导染色体重排的重组副产物。 单元格170,760-773.E715(2017)。 8。 K. Schlacher,H。Wu,M。Jasin,一种独特的复制叉保护途径将fanconi贫血肿瘤抑制剂连接到RAD51-BRCA1/2。 癌细胞22,106-116(2012)。 9。 S. Tye,G。E。Ronson,J。R。Morris,道路上的叉子:同源重组和停滞的复制叉保护部分。 Semin Cell Dev Biol 113,14-26(2021)。77,3-18(2020)。4。D. K. Bishop,RecA同源物DMC1和RAD51相互作用,在减数分裂染色体突触之前形成多个核复合物。Cell 79,1081-1092(1994)。 5。 A. Carver,X。Zhang,Rad51细丝动力学及其拮抗调节剂。 Semin Cell Dev Biol 113,3-13(2020)。 6。 Y. W. Chan,S。C. West,一种由同源重组产生的新的超级后期桥。 细胞周期17,2101-2109(2018)。 7。 A. Piazza,W。D. Wright,W.-D。海耶尔(Heyer),多侵略是诱导染色体重排的重组副产物。 单元格170,760-773.E715(2017)。 8。 K. Schlacher,H。Wu,M。Jasin,一种独特的复制叉保护途径将fanconi贫血肿瘤抑制剂连接到RAD51-BRCA1/2。 癌细胞22,106-116(2012)。 9。 S. Tye,G。E。Ronson,J。R。Morris,道路上的叉子:同源重组和停滞的复制叉保护部分。 Semin Cell Dev Biol 113,14-26(2021)。Cell 79,1081-1092(1994)。5。A.Carver,X。Zhang,Rad51细丝动力学及其拮抗调节剂。Semin Cell Dev Biol 113,3-13(2020)。6。Y. W. Chan,S。C. West,一种由同源重组产生的新的超级后期桥。细胞周期17,2101-2109(2018)。7。A. Piazza,W。D. Wright,W.-D。海耶尔(Heyer),多侵略是诱导染色体重排的重组副产物。 单元格170,760-773.E715(2017)。 8。 K. Schlacher,H。Wu,M。Jasin,一种独特的复制叉保护途径将fanconi贫血肿瘤抑制剂连接到RAD51-BRCA1/2。 癌细胞22,106-116(2012)。 9。 S. Tye,G。E。Ronson,J。R。Morris,道路上的叉子:同源重组和停滞的复制叉保护部分。 Semin Cell Dev Biol 113,14-26(2021)。A. Piazza,W。D. Wright,W.-D。海耶尔(Heyer),多侵略是诱导染色体重排的重组副产物。单元格170,760-773.E715(2017)。8。K. Schlacher,H。Wu,M。Jasin,一种独特的复制叉保护途径将fanconi贫血肿瘤抑制剂连接到RAD51-BRCA1/2。癌细胞22,106-116(2012)。9。S. Tye,G。E。Ronson,J。R。Morris,道路上的叉子:同源重组和停滞的复制叉保护部分。Semin Cell Dev Biol 113,14-26(2021)。10。H. L. Klein,Rad51过表达对正常和肿瘤细胞的后果。DNA修复(AMST)7,686-693(2008)。11。R。B. Jensen,A。Carreira,S。C. Kowalczykowski,纯化的人BRCA2刺激了Rad51介导的重组。自然467,678-683(2010)。12。L. A. Greenhough等。,RAD51B – RAD51C – RAD51D -XRCC2肿瘤抑制剂的结构和功能。自然619,650-657(2023)。13。Y. Rawal等。,在同源重组中对BCDX2复杂功能的结构见解。自然619,640-649(2023)。14。E. Antony等。 ,SRS2通过蛋白质 - 蛋白质相互作用触发ATP周转和RAD51与DNA解离的蛋白质蛋白质相互作用来解散RAD51丝。 mol Cell 35,105-115(2009)。 15。 J. Simandlova等。 ,FBH1解旋酶在体外破坏RAD51丝,并调节哺乳动物细胞中的同源重组*。 生物学杂志288,34168-34180(2013)。 16。 J. D. Ward等。 ,重叠的机制促进了减数分裂双链破裂修复期间突触后RAD-51细丝拆卸。 mol细胞37,259-272(2010)。 17。 M. Ito等。 ,Fignl1 AAA+ ATPase重塑了舒适性DNA复制和减数分裂重组中的RAD51和DMC1丝。 nat。 社区。 14,6857(2023)。 18。 J. Yuan,J。Chen,有效的同源重组修复需要含Fignl1的蛋白质复合物。 proc。E. Antony等。,SRS2通过蛋白质 - 蛋白质相互作用触发ATP周转和RAD51与DNA解离的蛋白质蛋白质相互作用来解散RAD51丝。mol Cell 35,105-115(2009)。15。J. Simandlova等。,FBH1解旋酶在体外破坏RAD51丝,并调节哺乳动物细胞中的同源重组*。生物学杂志288,34168-34180(2013)。16。J. D. Ward等。 ,重叠的机制促进了减数分裂双链破裂修复期间突触后RAD-51细丝拆卸。 mol细胞37,259-272(2010)。 17。 M. Ito等。 ,Fignl1 AAA+ ATPase重塑了舒适性DNA复制和减数分裂重组中的RAD51和DMC1丝。 nat。 社区。 14,6857(2023)。 18。 J. Yuan,J。Chen,有效的同源重组修复需要含Fignl1的蛋白质复合物。 proc。J. D. Ward等。,重叠的机制促进了减数分裂双链破裂修复期间突触后RAD-51细丝拆卸。mol细胞37,259-272(2010)。17。M. Ito等。,Fignl1 AAA+ ATPase重塑了舒适性DNA复制和减数分裂重组中的RAD51和DMC1丝。nat。社区。14,6857(2023)。18。J. Yuan,J。Chen,有效的同源重组修复需要含Fignl1的蛋白质复合物。proc。natl。学院。SCI。 110,10640-10645(2013)。 19。 Q. Zhang等。 ,flip-fignl1复合物调节在同源重组和复制叉重新启动中RAD51/DMC1的解离。 核酸Res 43,GKAD596(2023)。SCI。110,10640-10645(2013)。19。Q. Zhang等。 ,flip-fignl1复合物调节在同源重组和复制叉重新启动中RAD51/DMC1的解离。 核酸Res 43,GKAD596(2023)。Q. Zhang等。,flip-fignl1复合物调节在同源重组和复制叉重新启动中RAD51/DMC1的解离。核酸Res 43,GKAD596(2023)。
001 1-4 全体演讲 1 Sung-Joon Kim 奥氏体不锈钢中间隙原子的作用:C 与 N 002 5-7 1 相变 Tadashi Furuhara 界面工程在控制钢的微观结构和性能中的应用 003 8-11 1 相变 Yasunobu Nagataki 汽车用超高强度钢板的最新研究进展 006 12-15 1 相变 Mahesh Chandra Somani 北极应用新型超高强度钢的设计和加工的最新进展 007 16-18 1 晶粒结构控制 Munekazu Ohno 包晶钢凝固过程中粗柱状奥氏体晶粒的形成 008 19-20 1 晶粒结构控制 Shuang Xia 晶界特征分布对 316L 不锈钢力学性能的影响 009 21-22 1 晶粒结构控制Toshio Ogawa 通过三维微观结构分析表征纯铁和低碳钢的再结晶行为 010 23-25 1 晶粒结构控制 YongJie Yang 取向硅钢中一次再结晶织构的发展 011 26-29 1 第二相粒子控制 Yutaka Neishi 通过控制夹杂物形态提高特殊钢棒材和线材的性能 012 30-33 1 第二相粒子控制 Ling Zhang 含 2 wt%Nb 低碳钢的力学性能 013 34-37 1 第二相粒子控制 Wei Wang 通过测量高温下晶粒生长获得 TiN 在奥氏体中的溶度积 015 38-40 2 强度和变形 1 Nobuhiro Tsuji 完全再结晶超细晶粒钢同时实现高强度和高延展性的可能性 016 41-43 2 强度与变形 1 Elena Pereloma 揭示加工参数之间的关系,铁素体高强度低合金钢的相间析出与强化 017 44-47 2 强度与变形 1 Genichi Shigesato 高韧性钢板的微观组织控制 018 48-50 2 强度与变形 1 Norimitsu Koga 时效超低碳钢的低温拉伸性能 019 51-54 2 强度与变形 1 Myeong-heom Park 不同马氏体硬度的铁素体+马氏体双相钢的局部变形行为 020 55-57 2 强度与变形 2 Noriyuki Tsuchida 从应力分配角度改善力学性能 021 58 2 强度与变形 2 Stefanus Harjo 利用脉冲中子衍射观察钢材的变形行为 022 59 2 强度与变形 2 Si Gao 晶粒尺寸对钢材拉伸性能的影响304 不锈钢的原位中子衍射研究 023 60 2 先进钢种 1 Jungho Han 提高中锰钢低温韧性的可能性搅拌摩擦焊 024 61 2 先进钢种 1 Hongliang Yi 涂层/基体界面碳富集及其对 Al-Si 涂层压淬钢弯曲性能的影响 027 62-65 2 先进钢种 1 Dirk Ponge 高强度中高锰钢中的氢脆:从基础认识到新的抗氢微观结构设计 028 66-69 3 氢脆 Young-Kook Lee 微观结构和变形对珠光体钢氢脆的影响 029 70 3 氢脆 Hong Luo 环境引起的铁基多元合金的退化 030 71-73 3 氢脆 Shusaku Takagi 氢脆评估问题 031 74-76 3 氢脆 Akinobu Shibata 马氏体钢中的氢相关裂纹扩展行为 032 77-78 3 氢脆 Tomohiko Hojo 超高强度 TRIP 辅助钢的氢脆性能评估 033 79 3 耐热钢的设计 Satoru Kobayashi 提高长期结构稳定性的铁素体耐热钢的设计 034 80 3 设计耐热钢的设计 Shigeto Yamasaki Co 添加对高铬铁素体钢蠕变强度和磁性能的影响 035 81-84 3 耐热钢的设计 Nobuaki Sekido 利用纳米 SIMS 观察耐热铁素体钢在回火过程中硼偏析的变化 036 85-88 3 耐热钢的设计 Yoshiaki Toda 提高沉淀强化铁素体钢的蠕变强度 037 89-92 3 耐热钢的评价 Masatsugu Yaguchi 长期使用条件下 91 级钢的微观结构和蠕变强度 038 93 3 耐热钢的评价 Masatoshi Mitsuhara 晶界特征对 9Cr 铁素体耐热钢中 M23C6 碳化物生长的影响 039 94-97 3 18Cr 9Ni 3Cu Nb N钢的蠕变变形行为 040 98-101 3 耐热钢的评价 张胜德 长期使用超级304H钢锅炉管的组织与力学性能
“美国城市、城镇、社区、州、县、大都市区、邮政编码、区号和学校的本地指南。” 76 次观看45 次观看49 次观看39 次观看41 次观看36 次观看36 次观看37 次观看33 次观看37 次观看35 次观看35 次观看36 次观看40 次观看34 次观看45 次观看36 次观看39 次观看27 次观看35 次观看25 次观看37 次观看35 次观看32 次观看26 次观看29 次观看41 次观看24 次观看43 次观看25 次观看35 次观看30 次观看39 次观看27 次观看27 次观看30 次观看27 次观看22 次观看31 次观看30 次观看24 次观看26 次观看26 次观看31 次观看31 次观看29 次观看22 次观看40 次观看26 次观看24 次观看30 次观看40 次观看25 次观看26 次观看25 次观看19 次观看93 次观看80 次观看69 次观看84 次观看61 次观看63 次观看70 次观看83 次观看91 次观看105 次观看52 次观看57 次观看89 次观看67 次观看74 次观看88 次观看71 次观看55 次观看82 次观看52 次观看80 次观看73 次观看49 次观看69 次观看51浏览次数56 浏览次数56 浏览次数55 浏览次数60 浏览次数41 浏览次数65 浏览次数50 浏览次数65 浏览次数50 浏览次数41 浏览次数43 浏览次数52 浏览次数45 浏览次数55 浏览次数49 浏览次数43 浏览次数52 浏览次数62 浏览次数49 浏览次数44 浏览次数 从 0 天 0 小时 00 分钟 00 秒 分享此优惠 送货需要至少 7 个工作日才能发货 购买的物品可以从我们的办公室领取或送货 物品必须在 2021 年 6 月 27 日之前领取/收到 未在 2021 年 6 月 27 日之前领取/收到的物品将被没收,不予退款 您的产品可立即领取 - 详情请参阅下文 无现金价值/无现金返还/不退款 立即检查产品;自收到产品之日起 7 天内有缺陷退货,前提是退回的物品未使用且
