密西西比州环境质量部地下储罐分支环境响应行动承包商(ERACS)2025年1月28日
去年的喧嚣始于俄罗斯与乌克兰军事冲突后的网络对抗。 两国之间的战争得到了几个威胁行为者(AgainstTheWest、NetSec、GhostSec、Kelvinsecurity、Stormous Ransomware Group 和几个核黑客组织)的加入,他们从 2022 年 3 月到 9 月针对私人组织和政府机构发动了一系列协同网络攻击,以配合冲突双方各自的盟友。(参考文献 1 和 2)
技术发展与创新 (CDTI) 项目是西班牙科学与创新部支持的科学与创新任务计划 2021 年提案征集的一部分。该项目的拨款由欧盟通过下一代欧盟基金提供。
部落政府G.行政命令13045:保护儿童免受环境健康和安全风险H.行政命令13211:有关法规的措施,严重影响能源供应,分配或使用I。国家技术转移与进步法(NTTAA)J.国会审查法(CRA)VII。参考
业余主义(例如,业余爱好者和自己动手做法)长期以来一直帮助人类计算机的互动(HCI)学者来替代现状技术的发展,文化和实践。在2023年好莱坞电影工人罢工之后,许多学者,艺术家和活动家都呼吁采用AI的替代方法,以收回该设备,以获得共同创造和抵抗力的手段。为此,我们对20个AI融合的电影的20周制片人进行了为期11周的日记研究,并研究了生成电影的新兴空间,这是一种关键的技术实践。我们对电影和电影制片人对过程的思考的仔细阅读揭示了四种在电影制作中谈判AI使用的关键方法:最小化,最大化,分隔和复兴。我们讨论了这些方法如何表明地下电影制作文化有可能在AI周围形成,并与关键的业余爱好者恢复了对创造性可能性的社会控制。
1国际应用系统分析研究所(IIASA),A-2361奥地利Laxenburg,奥地利2号2号环境工程学院,弗罗茨瓦夫科学技术大学,50-370弗罗斯兰370 - 370年,波兰3,波兰3号电气和电子工程学院,东北部中国电力大学,北欧电力大学,北欧电力大学,102206,102206,环境保护和环境保护及环境保护,沃克沃克,沃克沃克,沃克沃克,沃克沃克沃克及以环境保护为50,及以上波兰的弗罗茨瓦夫5电力部门研究小组,里约热内卢大学,里约热内卢21941-901,巴西6水,能源和环境工程研究部,Oulu,Oulu,90570,ULULU,ULUU,ULUU,ULULU,ULUU 90570,芬兰大学770年7月78000 Kopiriia copururiy sciultia sciultia sciultia sciultia sciultia sciultia sciultia sciultia sciultia sciultia for 20999年汉堡,德国9沙漠农业中心,阿卜杜拉国王科学技术大学,东蒂瓦尔23955-6900,沙特阿拉伯 *通信:zakeri@iiasa@iiasa.ac.at
在瞬态能源背景下,风能或太阳能光伏等可变可再生能源在电力结构中的渗透率不断提高,需要灵活的能源存储系统来平衡供需。大量电力可以利用地下空间储存,对环境的影响较小。为此,可以在废弃或新建的地下结构中开发地下抽水蓄能水电 (UPSH)、压缩空气储能 (CAES)、氢能储能 (HES)、地下热能储能 (UTES) 或重力储能 (GES) 系统。本期特刊将讨论机械设计、地下基础设施的地质力学分析、热力学性能、地质和水文地质、公众接受度、环境影响、运营模式、电力市场、法律监管、往返能源效率和地下储能厂的经济可行性。 - 储能 - 地下抽水蓄能水电 - 压缩空气储能 - 重力储能 - 氢能储能 - 地下热能储能
摘要:本文深入研究了地下储氢的生物地球化学建模方法。它深入研究了地下氢的复杂动力学,重点研究了小型(孔隙实验室规模)和储层规模模型,强调了捕捉多孔介质中的微生物、地球化学和流体流动动态相互作用以准确模拟存储性能的重要性。小规模模型提供了对局部现象(例如微生物氢消耗和矿物反应)的详细见解,并且可以根据实验室数据进行验证和校准。相反,大规模模型对于评估项目的可行性和预测存储性能至关重要,但目前还不能通过实际数据来证明。这项工作解决了从精细尺度到储层模型的过渡挑战,整合了空间异质性和长期动态,同时保留了生物地球化学的复杂性。通过使用 PHREEQC、Comsol、DuMuX、Eclipse、CMG-GEM 等多种模拟工具,本研究探索了建模方法如何发展以纳入多物理过程和生化反馈回路,这对于预测氢的保留、流动和潜在风险至关重要。研究结果突出了当前建模技术的优势和局限性,并提出了一种工作流程,以充分利用现有的建模功能并开发储层模型来支持氢存储评估和管理。
地下储能技术利用深层地下空间将能源或战略资源(如石油、天然气、氢气、压缩空气和二氧化碳)储存在地下岩层中。这些技术具有显著优势,包括存储容量大、持续时间长和对环境的影响最小,为能源系统提供了可持续的解决方案。它们对于支持能源储备、稳定可再生能源供应和优化氢气利用、解决能源间歇性和储存等关键挑战至关重要。地下储能的主要形式包括压缩空气储能 (CAES)、地下热能储能 (UTES) 和盐穴储能,每种形式都适用于特定的地质条件。尽管它们具有潜力,但挑战仍然存在,包括选择合适的存储介质、确保安全性和稳定性、提高能源传输效率以及实现大规模部署和与可再生能源整合的经济可行性。此外,必须仔细评估环境影响和可持续性。