在测试时将源模型调整到目标数据分布是解决数据移位问题的有效方法。以前的方法通过使用熵最小化或正则化等技术使模型适应目标分布来解决此问题。在这些方法中,模型仍然通过对完整测试数据分布使用无监督损失的反向传播进行更新。在现实世界的临床环境中,由于隐私问题和部署时缺乏计算资源,动态地将模型调整到新的测试图像并避免在推理过程中更新模型更有意义。为此,我们提出了一种新的设置 - 动态自适应,它是零样本和偶发的(即,模型一次适应单个图像,并且在测试时不执行任何反向传播)。为了实现这一点,我们提出了一个名为 Adaptive UNet 的新框架,其中每个卷积块都配备了一个自适应批量归一化层,以根据域代码调整特征。域代码是使用专门针对医学图像进行训练的域先验生成器生成的。在测试时,模型仅接收新的测试图像并生成域代码以根据测试数据实例调整源模型的特征。我们验证了 2D 和 3D 数据分布偏移的性能,与以前的测试时自适应方法相比,我们在测试时不执行反向传播的情况下获得了更好的性能。关键词:测试时自适应、医学图像分割。
“脑瘤”一词描述了脑细胞不受控制的增加,这可能会产生各种不良后果。在医学研究领域,人们采用各种方法来发现脑瘤,而专家仍在使用的最可靠的方法是磁共振成像(MRI)。非侵入性MRI方法已发展成为一种主要的发射脑瘤调查工具。为了准确识别肿瘤的范围,可靠、完全自动的脑瘤分割方法仍在研究中。早期发现肿瘤,治疗成功的可能性更高。检测脑瘤影响细胞是一个繁琐且耗时的过程。尽早识别和分类脑瘤对于有效治疗非常重要。本文对现有方法进行了分析,以将各种形式的深度学习技术应用于MRI数据。本综述提供了基于混合深度学习的脑肿瘤诊断方法,该方法结合了不同的深度学习方法,如卷积神经网络 (CNN)、UNET 架构、GoogLeNet 和 Gabor 滤波器进行特征提取。通过广泛的调查,本综述得出结论,深度学习方法比传统的机器学习算法提供更准确、更高效的结果。这项调查强调了当前的临床挑战、潜在的未来解决方案,并开启了研究人员的挑战,以开发系统性脑肿瘤检测系统,展示临床上可接受的更好的准确性,这将有助于放射科医生进行诊断。
摘要。快速磁共振成像(MRI)序列在临床环境中高度要求。但是,成像信息不足会导致诊断困难。MR图像超分辨率(SR)是解决此问题的一种有希望的方法,但是由于获取配对的低分辨率和高分辨率(LR和HR)图像的实际困难,其性能受到限制。大多数现有的方法都使用倒数采样的LR IMENES,由于俯瞰域距离或由未知和复杂的降解引起的近似差而可能不准确。在这项研究中,我们提出了一个基于真实但未配对的HR/LR图像的1.5T MR脑图像的域距离调整SR框架。我们的框架工作利用了学习任意未配对图像的抽象表示并适应域间隙的能力,从而使其可行,以证明现实的下采样。此外,我们提出了一个新颖的生成对抗网络(GAN)模型,该模型集成了包含编码器,骨干和解码器的发电机,以及一个基于UNET的歧视器和多尺度感知损失。这种方法产生了令人信服的纹理,并成功地恢复了众所周知的公共数据集上过时的1.5T MRI数据,在感知和定量评估中的最先进的SR方法表现优于最先进的SR方法。
上下文。太阳通过发射能量和电磁辐射在太空天气中起着重要作用,这些辐射影响着地球周围的环境。诸如SOHO,立体声和SDO之类的任务在多个波长下捕获了太阳观测,以监视和预测太阳事件。但是,这些任务的数据传输通常受到限制,特别是对于那些在距地球较远的距离的人来说。这限制了连续观察的可用性。目标。我们增加了太阳图像的空间和时间分辨率,以提高太阳能数据的质量和可用性。通过对遥测约束进行构造并提供更详细的太阳图像重建,我们试图促进对太阳能动态的更准确分析并改善太空天气预测。方法。我们特别采用了基于UNET的体系结构的深度学习技术来生成高分辨率的太阳图像,从而增强了太阳结构的复杂细节。此外,我们使用类似的体系结构来重建具有降低时间分辨率的太阳图像序列,以预测缺失的帧和恢复时间连续性。结果。我们的深度学习方法成功增强了太阳图像的分辨率,并揭示了太阳结构的详细信息。该模型还预测了太阳图像序列中缺失的帧,尽管遥测限制了,但尽管有遥测限制,从而可以更连续观察。这些进步有助于更好地分析太阳能动态,并为改善空间天气预报和未来的太阳能物理学研究奠定了基础。
1 突尼斯埃尔马纳尔大学 (UTM) 生物物理与医学技术实验室 ISTMT,突尼斯 2 突尼斯蒙吉本哈米达国立神经病学研究所神经放射学系,突尼斯 3 突尼斯医学院生物物理与医学技术实验室,突尼斯 摘要 缺血性脑卒中是最常见的脑血管疾病,也是全球死亡和长期残疾的主要原因之一。及早发现缺血性脑卒中有助于医生及早诊断,从而大大减少死亡或残疾的可能性。医学研究中使用多种方式来检测缺血性脑卒中;不过,磁共振成像 (MRI) 仍然是该领域最有效的方式。最近,许多研究人员使用深度学习模型在 MRI 图像中检测缺血性脑卒中,并取得了令人鼓舞的结果。在本文中,我们提出了一种使用深度学习模型从 MRI 图像中自动分割缺血性中风病变 (ISL) 的方法。使用的 UNet 模型是混合框架,具有预训练的 ResNet50 架构。数据增强技术已被用于超越模型的准确性。所提出的工作流程已在公共缺血性中风病变分割挑战 (ISLES) 2015 数据集上进行了训练和测试。实验结果证明了我们的方法的性能效率,它实现了 99.43% 的平均准确率和 64.14% 的 Dice 系数 (DC)。我们的方法优于其他最先进的方法,更具体地说,在准确率方面。
抽象目的:通过开发固有的实时运动校正方法来提高功能性胎儿MRI扫描的运动鲁棒性。MRI提供了表征胎儿脑发育和生长的理想工具。但是,这是一种相对较慢的成像技术,因此非常容易受试者运动,尤其是在获得基于摩尔型回声平面成像的功能性MRI实验中,例如,扩散的MRI或血液氧基因级依赖性依赖性依赖性MRI。方法:在125个胎儿数据集上对3D UNET进行了训练,以实时跟踪扫描的每次重复中的胎儿脑位置。此跟踪插入临床扫描仪上的Gadgetron管道中,允许在修改的回声平面成像序列中更新视野的位置。该方法在3T时实时评估了对受控运动幻影实验和十个胎儿MR研究(17 + 4-34 + 3胎周)。在29个低场(0.55t)数据集上进行了回顾性测试。结果:我们的方法实现了实时的胎儿头跟踪和对采集几何形状的前瞻性校正。定位性能的骰子得分分别为84.4%和82.3%,对于看不见的1.5T/3T和0.55T胎儿数据,头孢胎胎儿的值较高,并且随着胎龄的增加。结论:即使在3T时实时的18周GA的胎儿,我们的技术也能够跟随胎儿大脑,并成功地将“离线”应用于0.55T。接下来,它将部署到其他方式,例如胎儿扩散MRI和诊断出患有妊娠并发症的孕妇人群,例如前体前和先天性心脏病。
摘要 我们提出了 MedicDeepLabv3+,这是一种卷积神经网络,是第一个完全自动化地分割缺血性病变大鼠磁共振 (MR) 体积中的大脑半球的方法。MedicDeepLabv3+ 通过先进的解码器改进了最先进的 DeepLabv3+,结合了空间注意层和额外的跳过连接,正如我们在实验中所展示的那样,可以实现更精确的分割。MedicDeepLabv3+ 不需要 MR 图像预处理(例如偏置场校正或模板配准),可以在不到 1 秒的时间内完成分割,并且可以根据可用资源调整其 GPU 内存要求。我们在一个由 11 个队列的 MR 体积组成的异构训练集上优化了 MedicDeepLabv3+ 和其他六个最先进的卷积神经网络(DeepLabv3+、UNet、HighRes3DNet、V-Net、VoxResNet、Demon),这些队列是从不同病变阶段获取的。然后,我们在包含 655 张 MR 大鼠脑体积的大型数据集上评估了经过训练的模型和两种专门为啮齿动物 MRI 颅骨剥离 (RATS 和 RBET) 设计的方法。在我们的实验中,MedicDeepLabv3+ 的表现优于其他方法,在脑部和对侧半球区域的平均 Dice 系数分别为 0.952 和 0.944。此外,我们还表明,尽管 GPU 内存和训练数据有限,但我们的 MedicDeepLabv3+ 也提供了令人满意的分割。总之,我们的方法(公开发布于 https://github.com/jmlipman/MedicDeepLabv3Plus)在多种情况下都取得了出色的结果,证明了其能够减轻大鼠神经影像研究中的人工工作量。
大脑中线移位(MLS)是一种定性和定量的放射学特征,它可以衡量脑中线结构的横向移位,以响应由血肿,肿瘤,脓肿或任何其他占据脑膜内病变引起的质量效应。可以使用其他参数来确定神经外科干预的紧迫性,并预测占据病变的患者的临床结果。然而,由于跨病例的临床相关大脑结构的差异很大,因此精确检测和量化MLS可能具有挑战性。在这项研究中,我们通过使用分类和分割网络架构来研究了由病例级MLS检测以及脑部标记位置的初始定位以及对脑部标记位置的最初定位和完善的级联网络管道。我们使用3D U-NET进行初始定位,然后使用2D U-NET来估计更精确的分辨率的确切地标点。在改进步骤中,我们从多个切片中融合了预测,以计算每个地标的最终位置。,我们用大脑的解剖标记产生的高斯热图目标训练了这两个UNET。案例级别的地面真相标签和地标注释是由多个训练有素的注释者产生的,并由放射学技术人员和放射科医生进行了审查。我们提出的管道实现了使用2,545个头部非对比度计算的测试数据集在AUC中的情况级MLS检测性能
动画线Inbetwewing是动画制作的关键步骤,旨在通过预测两个关键帧之间的中间线艺术来增强动画流动性。但是,现有方法在有效地解决稀疏像素和行动中的重大运动时面临挑战。在文献中,通常采用倒角距离(CD)来评估表现性能。尽管达到了有利的CD值,但现有方法通常会产生与线路断开连接的插入框架,尤其是对于涉及大型运动的场景 - iOS。为了解决这个问题,我们提出了一种简单而有效的插值方法,用于动画线,其中采用基于薄板样条的变换来更准确地估算两个关键帧之间的关键点对应关系,尤其是对于大型运动方案。在粗估计的基础上,使用简单的UNET模型在最终框架插值之前,采用了一个运动精炼模块来进一步增强运动细节。此外,为了更多地评估动画线的性能,我们完善了CD指标,并引入了一个名为“加权倒角距离”的新指标,该指标与视觉感知质量具有更高的一致性。此外,我们结合了Earth Mover的距离并进行用户研究以提供更全面的评估。我们的方法通过以增强的流动性提供高质量的介导结果来执行现有方法。
摘要 - 片上功率电网(PG)的摘要分析至关重要,但由于综合电路(IC)量表的迅速增长,在计算上具有挑战性。当前EDA软件采用的传统数值方法是准确但非常耗时的。为了实现IR滴的快速分析,已经引入了各种机器学习(ML)方法来解决数值方法的效率低下。但是,可解释性或可伸缩性问题一直在限制实际应用。在这项工作中,我们提出了IR融合,该IR融合旨在将数值方法与ML相结合,以实现静态IR滴分析中准确性和效率之间的权衡和互补性。具体而言,数值方法用于获得粗糙的解决方案,并利用ML模型进一步提高准确性。在我们的框架中,应用有效的数值求解器AMG-PCG用于获得粗糙的数值解决方案。然后,基于数值解决方案,采用了代表PG的多层结构的层次数值结构信息的融合,并设计了Inpection unet u-net模型,旨在捕获不同尺度上特征的详细信息和相互作用。为了应对PG设计的局限性和多样性,将增强的课程学习策略应用于培训阶段。对IR融合的评估表明,其准确性明显优于以前的基于ML的方法,同时需要在求解器上迭代较少的迭代才能达到相同的准确性,与数值方法相比。