数学常数(例如π,E和φ)长期以来一直被认为是天然系统中几何,生长和自组织的基础。然而,常规数学将这些数字视为独立领域的新兴特性(几何,微积分和数字理论),而不是统一框架内的内在共振状态。动态新兴系统(代码)的手性提出,这些常数不是任意的,而是在主要驱动的共振字段中作为必要的相锁定结构出现。
该策略阐明了欧洲机器人界的集体愿景。它借鉴了来自欧洲境内的多种信息来源,来自欧洲主题小组,研讨会和市场研究,从跟踪全球机器人技术的进步以及与其他协会和组织的合作。它提出了一系列建议,内容涉及公共和私人组织应如何努力确保欧洲的机器人技术在中长期内具有经济和社会影响。这些关于使欧洲产品和服务能够创造附加值的中心,同时维持欧洲强大的机器人研究和创新基础。它列出了支持吸收的案例,长期关注研究并满足从机器人的角度来支持欧洲强大的创新基础设施的基本需求。它探讨了机器人创新的途径和创新增长的方向。
1.IEA 可再生能源报告,2023 年,https://www.iea.org/reports/renewables-2023/executive-summary 2.世界经济论坛:https://www.weforum.org/agenda/2024/01/energy-transition-renewables-capacity/ 3.Ember:https://ember-climate.org/insights/in-brief/tripling-renewables-and-doubling-efficiency-will-accelerate-a-fossil-phaseout/
●教师/学校秘书应通过AESOP/FRANTLINE系统要求获得认证的代替教师。www.aesoponline.com●登录前线www.aesoponline.com,并按照下面的说明在eesop/Frontline中输入缺席。●输入您缺席的日期。●进入缺席时,如果需要替代,请选择“是,需要替代”●输入缺席的原因:“疾病,PB,PN等”。●由于将实际上/远程学习进行指导,因此RUSD老师必须将课程计划上传到代替教师的eesop/Frontline门户网站●这是您将课程计划上传到代替教师的eesop/Frontline Portal的方式:●准备在Aesop/Frontline中创建课程,请按照pdf附件来节省课程。●单击“选择文件”(请参阅下图)选择当天的PDF课程计划,然后上传文件。●凭证技术员,Jewel Bundy将确保已分配的替代品已经在Google教室接受过培训。
联合学习(FL)促进了客户在培训共享的机器学习模型的情况下合作,而无需公开各个私人数据。尽管如此,FL仍然容易受到效用和隐私攻击的影响,特别是逃避数据中毒和建模反演攻击,从而损害了系统的效率和数据隐私。现有的范围通常专门针对特定的单一攻击,缺乏普遍性和全面的防守者的观点。为了应对这些挑战,我们介绍了f ederpography d efense(FCD),这是一个统一的单框架,与辩护人的观点保持一致。FCD采用基于行的转座密码加密,并使用秘密钥匙来对抗逃避黑框数据中毒和模型反转攻击。FCD的症结在于将整个学习过程转移到加密的数据空间中,并使用由Kullback-Leibler(KL)差异引导的新型蒸馏损失。此措施比较了本地预审最终的教师模型对正常数据的预测以及本地学生模型对FCD加密形式相同数据的预测的概率分布。通过在此加密空间中工作,FCD消除了服务器上的解密需求,从而导致了计算复杂性。我们证明了FCD的实践可行性,并将其应用于对基准数据集(GTSRB,KBTS,CIFAR10和EMNIST)上的Evasion实用程序攻击。我们进一步扩展了FCD,以抵御CI-FAR100数据集中的Split FL中的模型反转攻击。与第二最佳方法相比,我们在各种攻击和FL设置中进行的实验表明了对效用逃避(影响> 30)和隐私攻击(MSE> 73)的实际可行性和巨大性。
实现统一的单眼3D对象检测,包括室内和室外场景,在机器人导航等应用中非常重要。然而,涉及各种数据方案来训练模型引起了挑战,因为它们的特性显着不同,例如,二 - 几何特性和异质域分离。为了应对这些挑战,我们根据鸟类的视图(BEV)检测范式建立了一个检测器,在该检测范式中,当采用多个数据方案以训练检测器时,明确的特征投影有利于对几何学学习模棱两可。然后,我们将经典的BEV检测体系结构分为两个阶段,并提出了不均匀的BEV网格设计,以处理由上述Challenges引起的收敛不稳定。此外,我们开发了稀疏的BEV功能策略,以降低计算成本和处理异质域的统一操作方法。将这些技术结合起来,得出了一个统一的检测器Unimode,它超过了富有挑战性的Omni3D数据集(一个大规模的数据集(一个室内和室外场景))的先前最先进的AP 3D,揭示了Bev bev tor tor tor tor tor tor tor unified 3D对象的第一个成功概括。
我们介绍了Florence-2,这是一个新型视觉基础模型,具有统一的,及时的代表,用于量级计算机视觉和视觉语言任务。在转移学习方面表现出色时,他们努力通过简单的说明执行各种任务,这意味着处理各种空间层次结构和语义粒度的复杂性。Florence-2旨在将文本推出作为任务说明,并以文本形式产生理想的结果,无论是限制,对象检测,接地还是分割。这种多任务学习设置需要大规模的高质量注释数据。为此,我们使用自动化图像注释和改进的迭代策略,共同开发了1.26亿张图像的FLD-5B。我们采用了一个序列结构,以训练佛罗伦萨-2,以执行多功能和全面的视觉任务。对众多任务的广泛评估表明,佛罗伦萨-2是具有未曾预性零击和微调功能的强大愿景基础模型竞争者。
可解释人工智能 (XAI) 领域已迅速成为一个蓬勃发展且成果丰硕的社区。然而,该领域一个不为人知、反复出现且公认的问题是缺乏对其术语的共识。特别是,每一项新贡献似乎都依赖于其自己的(通常是直观的)术语版本,例如“解释”和“阐释”。这种混乱阻碍了该领域进步的巩固,无法满足科学和监管要求,例如在比较方法或确定其对偏见和公平约束的遵从性时。我们提出了一个理论框架,它不仅为这些术语提供了具体的定义,而且还概述了产生解释和阐释所需的所有步骤。该框架还允许重新语境化现有贡献,以便可以衡量其范围,从而使它们与其他方法具有可比性。我们表明,该框架符合对解释、可解释性和评估指标的要求。我们提供了一个用例,展示了如何使用该框架来比较 LIME、SHAP 和 MDNet,确定它们的优点和缺点。最后,我们从我们的框架的角度讨论了 XAI 的相关趋势以及对未来工作的建议。
威胁称为零日攻击,可以通过人工智能和机器学习模型轻松理解。查询。即使是生成这些查询的消息尚未被确定为威胁,AI也可以识别它们包含威胁并立即生成警报。被认为是新威胁的识别指纹的查询变成了智能,并通过更新分发,并提供了具有传统扫描工具的所有用户。
使用穿透式细胞外多通道电极阵列(通常称为神经探针)记录神经元活动是探测神经元活动最广泛的方法之一。尽管有大量可用的细胞外探针设计,但尖峰分类软件要求的电极通道顺序和相对几何形状的映射这一耗时过程总是留给最终用户。因此,这个手动过程容易出现错误映射,进而导致不良的尖峰分类误差和效率低下。在这里,我们介绍了 ProbeInterface,这是一个开源项目,旨在通过消除在尖峰分类之前手动进行探针映射的步骤来统一神经探针元数据描述,以分析细胞外神经记录。ProbeInterface 首先是一个 Python API,使用户能够以任何所需的复杂度级别创建和可视化探针和探针组。其次,ProbeInterface 有助于以可重现的方式生成任何特定数据采集设置的全面接线描述,这通常涉及使用记录探头、探头、适配器和采集系统。第三,我们与探头制造商合作编译了一个可用探头的开放库,可以使用我们的 Python API 在运行时下载。最后,使用 ProbeInterface,我们定义了一种用于探头处理的文件格式,其中包含 FAIR 探头描述的所有必要信息,并且与神经科学中的其他开放标准兼容且互补。