摘要。宽场成像仪(WFI)是高能天体物理学的高级望远镜(雅典娜)的两种焦平面仪器之一,ESA的下一个大型X射线天文台计划于2030年代初发射。当前的基线光环轨道在L2左右,并且正在考虑太阳 - 地球系统的第二个Lagrangian点。对于潜在的光环轨道,辐射环境,太阳能和宇宙质子,电子和Heions都将影响仪器的性能。对仪器背景的进一步关键贡献是由未关注的宇宙硬X射线背景产生的。重要的是要了解和估算预期的工具背景并研究措施,例如设计模式或分析方法,这可以改善预期的背景水平,以达到具有挑战性的科学要求(<5×10 - 3计数∕ cm 2 ∕ cm 2 kev kev s s in 2至7 kev)。通过考虑到L2处的质子通量的新信息,可以改善Geant4中进行的WFI背景模拟。此外,已对WFI仪器的模拟模型及其在Geant4模拟中采用的周围环境进行了完善,以遵循WFI摄像机的技术开发。©作者。由SPIE发表在创意共享归因4.0未体育许可下。全部或部分分发或复制此工作需要完全归因于原始出版物,包括其DOI。[doi:10.1117/1.jatis.7.3.034001]
摘要。适当的田间管理需要高精度、高准确度和高分辨率的植物高度测量方法。研究表明,地面激光扫描 (TLS) 适用于捕获农作物等小物体。本文介绍了用于监测中国水稻田植物高度的多时相 TLS 调查结果。在田间试验和农民常规管理的田地上进行了三次活动。高密度的测量点使我们能够建立分辨率为 1 厘米的作物表面模型,可用于推导植物高度。对于两个地点,TLS 得出的植物高度和手动测量的植物高度之间都具有很强的相关性(R 2 = 0.91),这证实了扫描数据的准确性。根据田间试验的植物高度和生物量样本之间的相关性建立了生物量回归模型(R 2 = 0.86)。模拟值和测量值之间的强相关性(R 2 = 0.90)支持了对农民田地的可转移性。独立的生物量测量用于验证时间可转移性。该研究证明了 TLS 在推导植物高度方面的优势,可用于模拟生物量。因此,激光扫描方法是精准农业的一种很有前途的工具。© 作者。由 SPIE 根据知识共享署名 3.0 未移植许可证出版。
摘要。中红外检测器阵列从2.8到20μm,在Origins空间望远镜的中红外光谱仪仪器的设计中基本。该仪器旨在检测和测量外部宿主星的气体中生物起源气体气体的光谱特征。为了进行这些检测,当检测器阵列的像素的像素在几个小时的典型传输时间内暴露于多个时间序列积分中的恒定通量时,需要具有高信号稳定性。通过使用致密的瞳孔光谱仪设计,可以缓解指向效应,因为指向变化不会在检测器上删除光谱,并且在大量像素上平均每个光的光长度平均,从而提供了良好的分光光度计稳定性。当前的最新检测器阵列无法实现这些稳定性,尽管有了可行的开发计划,应该可以实现这种级别的调整。正在考虑此开发的三种检测器技术,即HGCDTE阵列,SI:作为杂质带传导阵列和过渡边缘超级导体重测阵列。我们主要处理HGCDTE技术开发,但也引入了其他两种技术的前进道路。经过几年的调查计划,将进行下调以选择飞行技术。©作者。由SPIE发表在创意共享归因4.0未体育许可下。全部或部分分发或重新分配或重新分配本工作,需要完全归因于原始出版物,包括其DOI。[doi:10.1117/1 Jatis.6.4.041503]
摘要。中红外检测器阵列从2.8到20μm,在Origins空间望远镜的中红外光谱仪仪器的设计中基本。该仪器旨在检测和测量外部宿主星的气体中生物起源气体气体的光谱特征。为了进行这些检测,当检测器阵列的像素的像素在几个小时的典型传输时间内暴露于多个时间序列积分中的恒定通量时,需要具有高信号稳定性。通过使用致密的瞳孔光谱仪设计,可以缓解指向效应,因为指向变化不会在检测器上删除光谱,并且在大量像素上平均每个光的光长度平均,从而提供了良好的分光光度计稳定性。当前的最新检测器阵列无法实现这些稳定性,尽管有了可行的开发计划,应该可以实现这种级别的调整。正在考虑此开发的三种检测器技术,HGCDTE阵列,SI:作为杂质带传导阵列和过渡边缘超级导体重测阵列。我们主要处理HGCDTE技术开发,但也引入了其他两种技术的前进道路。经过几年的调查计划,将进行下调以选择飞行技术。©作者。由SPIE发表在创意共享归因4.0未体育许可下。全部或部分分发或重新分配或重新分配本工作,需要完全归因于原始出版物,包括其DOI。[doi:10.1117/1 Jatis.6.4.041503]
摘要:先进镜面技术开发 (AMTD) 项目为期 6 年,旨在完善 4 米或更大的单片或分段紫外/光学/红外空间望远镜主镜组件所需的技术,用于一般天体物理和系外行星任务。AMTD 采用科学驱动的系统工程方法。从科学要求开始,推导出主镜孔径、面密度、表面误差和稳定性的工程规范。影响最大的规范可能是每 10 分钟 10 pm 的波前稳定性。六项关键技术取得了进展:(1) 制造大孔径低面密度高刚度镜面基板;(2) 设计支撑系统;(3) 校正中/高空间频率图形误差;(4) 减轻段边缘衍射;(5) 调整段间间隙;(6) 验证集成模型。 AMTD 成功展示了一种制造尺寸达 1.5 米、厚度达 40 厘米的基板的工艺,该工艺通过堆叠多个核心元件并将它们低温熔合在一起来实现。为了帮助预测在轨性能并协助架构贸易研究,为两个镜子组件(由 AMTD 合作伙伴 Harris Corp. 制造的 1.5 米超低膨胀 (ULE ® ) 镜子和 Schott North American 拥有的 1.2 米 Zerodur ® 镜子)创建了集成模型。X 射线计算机断层扫描用于构建 1.5 米 ULE ® 镜子的“竣工”模型。通过在相关的热真空环境中测试全尺寸和子尺寸组件来验证这些模型。© 作者。由 SPIE 根据知识共享署名 4.0 未本地化许可证出版。全部或部分分发或复制本作品需要完全署名原始出版物,包括其 DOI。 [DOI:10.1117/1.JATIS.6.2.025001]
摘要。森林变化检测对于可持续森林管理至关重要。由于毁林(例如野火或开发活动引起的伐木)或造林而导致的森林面积变化会改变森林总面积。此外,它还会影响可用于商业目的的可用库存、碳排放引起的气候变化以及森林栖息地估计的生物多样性,这对于灾害管理和政策制定至关重要。近年来,林业人员依靠手工制作的特征或双时间变化检测方法来检测遥感图像中的变化以估计森林面积。由于手动处理步骤,这些方法很脆弱且容易出错,并且可能产生不准确的(即低估或高估)分割结果。与传统方法相比,我们提出了 AI-ForestWatch,这是一个用于森林估计和变化分析的端到端框架。所提出的方法使用基于深度卷积神经网络的语义分割来处理多光谱空间图像,通过自动从数据集中提取特征来定量监测森林覆盖变化模式。我们的分析完全由数据驱动,并使用 2014 年至 2020 年的扩展版(带植被指数)Landsat-8 多光谱影像进行。作为案例研究,我们估算了巴基斯坦 15 个地区的森林面积,并生成了 2014 年至 2020 年的森林变化图,在此期间,这些地区开展了主要的造林活动。我们的批判性分析显示,15 个地区中有 14 个地区的森林覆盖率有所提高。AI-ForestWatch 框架及其相关数据集将在发布后公开,以便其他国家或地区可以采用。© 作者。由 SPIE 根据知识共享署名 4.0 未移植许可证出版。分发或复制本作品的全部或部分内容需要完全署名原始出版物,包括其 DOI。[DOI:10.1117/1.JRS.15.024518]
摘要。我们评估了在蒙古某铜矿床环境中,一种新型系统像素清晰校准场在航空高光谱矿物测绘中应用的机会和性能。校准场旨在用于估计特定地质场景中单个像素中关键矿物的灵敏度和量化。校准场的布局由两种不同的含铜岩石样品、一种来自矿山的低铜含量岩石材料、来自矿山的尾矿材料和具有明确已知光谱特征的校准材料组成。样品材料的缩放覆盖范围旨在开发统计方法,以基于像素的方法量化航空调查中的目标矿物。数据收集包括使用地球化学、X 射线衍射以及微观和电子光栅微观方法描述校准材料。使用可见光和近红外机载传感器以及短波红外机载传感器,从六个高度多次重复收集校准场的数据。经过像元校正和大气校正后,对1400、1900、2200nm处黏土矿物的吸收特征进行了精确测量和统计分析,给出了覆盖率与吸收特征特别是在2200nm附近的相关性,以及飞行高度对探测灵敏度的影响和
摘要。使用扫描隧道显微镜(STM)模板的氢终止硅的掺杂剂前体分子的附着,已用于将电子设备与次纳米计精度进行重新处理,通常用于量子物理学实验。这个过程,我们称之为原子精度高级制造(APAM),在固体溶解度极限之外掺入硅,并产生电气和光学特性,这些特性也可能对微电子和等离子化的应用有用。但是,扫描的探针光刻缺少开发更复杂的应用所需的吞吐量。在这里,我们演示并表征了APAM设备工作流程,在该工作流程中,原子层的扫描探针光刻已被光刻所取代。紫外线激光显示出在纳秒时间尺度上氢化所需的温度高于温度的局部和控制的硅,这是一种抗性不足和过度暴露的过程。stm图像表明狭窄的能量密度范围,其中表面既受嘲笑又未受损。对光热加热和随后的氢脱附动力学进行建模表明,在我们的模式过程中达到的sil iCON表面温度超过了温度填充实验中氢去除氢所需的表面温度。与STM相比,发现通过依次的光灭绝区域进行磷的范德Pauw结构,然后将其暴露于磷酸的区域,然后将其暴露于磷酸。©作者。[doi:10.1117/1.jmm.20.1.014901]最后,还证明了可以同时执行的光含量和前体暴露步骤,这是使APAM在超高真空外启用APAM的潜在途径。由SPIE发表在创意共享归因4.0未体育许可下。全部或部分分配或复制此工作需要完全归因于原始出版物,包括其DOI。
摘要。使用扫描隧道显微镜(STM)模板的氢终止硅的掺杂剂前体分子的附着,已用于将电子设备覆盖具有次纳米计精度的电子设备,通常用于量子物理学实验。这个过程,我们称之为原子精度高级制造(APAM),在固体溶解度极限之外掺入硅,并产生电气和光学特性,这些特性也可能对微电子和等离子化的应用也有用。但是,扫描的探针光刻缺少开发更复杂的应用所需的吞吐量。在这里,我们演示并表征了APAM设备工作流程,在该工作流程中,原子层的扫描探针光刻已被光刻所取代。紫外线激光显示出在纳秒时间尺度上氢化所需的温度高于温度的局部和控制的硅,这是一种抗性不足和过度暴露的过程。stm图像表明狭窄的能量密度范围,其中表面既受嘲笑又未受损。对光热加热和随后的氢脱附动力学进行建模表明,在我们的模式过程中达到的sil iCON表面温度超过了温度填充实验中氢去除氢所需的表面温度。与STM相比,发现通过依次的光灭绝区域进行磷的范德Pauw结构,然后将其暴露于磷酸的区域,然后将其暴露于磷酸。©作者。[doi:10.1117/1.jmm.20.1.014901]最后,还证明了可以同时执行的光含量和前体暴露步骤,这是使APAM在超高真空外启用APAM的潜在途径。由SPIE发表在创意共享归因4.0未体育许可下。全部或部分分配或复制此工作需要完全归因于原始出版物,包括其DOI。
©2024萨宾气候变化法中心,哥伦比亚法学院萨宾气候变化中心法律制定了与气候变化打击气候变化的法律技术,培训法律学生和律师使用,并为法律专业和公众提供有关气候法律和规定的关键主题的最新资源。它与哥伦比亚大学气候学校的科学家紧密合作,并拥有各种政府,非政府和学术组织。萨宾气候变化法中心,哥伦比亚法学院435 West 116th Street纽约,纽约,纽约10027电话:+1(212)854-3287电子邮件:columbiaclimate@gmail.com web:https://climate.law.law.columbia.edu/twitter/twitter:@sabincincenter博客: http://blogs.law.columbia.edu/climatechange免责声明:此报告仅是Sabin气候变化法中心的责任,并不反映哥伦比亚法学院或哥伦比亚大学的观点。本报告是一项仅供参考目的提供的学术研究,不构成法律建议。信息的传输不是打算创建的,并且收据不构成,这是发件人和接收者之间的律师 - 客户关系。,没有任何一方不得采取或依靠本报告中包含的任何信息,而不会先寻求律师的建议。本文的准备得到了海洋保护区的慷慨支持。Sabin Center对其内容完全负责。马丁·洛克曼(Martin Lockman)是萨宾气候变化法中心和哥伦比亚法学院副研究学者的气候法律研究员。关于作者:罗马·韦伯(Romany M. Webb)是萨宾气候变化法中心的副主任,哥伦比亚法学院的研究学者,哥伦比亚气候学院气候辅助副教授,哥伦比亚新闻学研究生院的气候科学高级顾问。封面图片:Wikimedia Commons的照片用户NANDARO,在创意共享属性 - 属于3.0的许可下,未体育的许可证
