这项迷你审查将重点放在过去3年中乙烯基聚合物的光催化升级和解聚的发展。首先简要讨论聚苯乙烯的升级,以及有关其他不可生物降解聚合物的升级的最新报道。有关聚苯乙烯升级的全面摘要,鼓励读者参考最近的出色评论。[6,7b,c,8]相反,这项迷你综述旨在对乙烯基聚合物的光催化降解进行严格讨论,包括聚甲基丙烯酸酯,聚丙烯酸酯,聚丙烯酸酯和其他材料,例如聚乙烯基醚。尽管当前的聚合物晶体降解策略不会像聚苯乙烯那样产生高增值的小分子,但它们可以通过高效的光催化过程将其完全解散回成单体。最后但并非最不重要的一点是,在讨论我们对令人兴奋的新方向的愿景中提供了关键的未来前景。
Carbon Upcycling 的商业技术利用当今存在的数百万吨固体废物副产品来封存点源二氧化碳排放,并生产出比传统水泥低 60% 的含碳水泥。它的工作原理是加速自然的碳矿化过程,而自然界需要数百年才能完成这一过程,Carbon Upcycling 只需几个小时即可完成。这一创新过程使碳捕获和储存变得民主化,通过将混凝土基础设施转变为碳汇,消除了其对特定地区的限制,而无需过度使用水或增加电网压力。最重要的是,这项技术可以生产出更坚固、更能适应气候的混凝土,成本与当今的水泥价格相当。
橄榄油生产会产生大量的果渣,这些果渣通常被丢弃在土壤中,对农业和环境产生不利影响。此外,气候变化加剧了植物病害,并促进了有毒植物化学物质在农业中的使用。然而,橄榄磨坊废料具有作为可重复使用和宝贵的生物资源的巨大潜力。我们使用稀释乙醇(一种环保溶剂)提取了含有短和长寡半乳糖醛酸苷、短阿拉伯寡糖和多糖的级分。获得的提取物引发了拟南芥幼苗中植物先天免疫的关键特征,包括丝裂原活化蛋白激酶 MPK3 和 MPK6 的磷酸化以及防御基因(如 CYP81F2 、 WRKY33 、 WRKY53 和 FRK1 )的上调。值得注意的是,用橄榄果渣提取物对成年拟南芥和番茄植株进行预处理可启动防御反应,增强其对植物病原菌灰葡萄孢和丁香假单胞菌的抵抗力。我们的研究结果强调了在橄榄油生产后期收集的两相橄榄果渣在低成本和可持续的聚糖诱导剂中进行升级再造的机会,有助于减少化学合成农药的使用。
一种两步催化的热解技术可用于从废物塑料和水热合成途径中产生氧化石墨烯(RGO),以产生NICO 2 O 4纳米棒和NICO 2 O 4 @WPRGO纳米复合材料。废物塑料衍生的还原石墨烯(WPRGO)提供了导电网络,并刺激了其表面上NICO 2 O 4纳米棒的生长,以增加电化学电荷存储性能期间电子的收集和运输。此技术使NICO 2 O 4 @WPRGO适用于超级电容器电极材料。使用2 M KOH溶液中的两个和三电极系统评估复合材料的电化学性能。NICO 2 O 4 @WPRGO材料的出色特定电容值及其对称的CV和GCD的对称原型电池约为1566 F G 1和400 F G 1(以2 mV s 1)和1105 F G 1和334 F G 1和334 F G 1(分别为0.5 A G 1),分别为0.5 A G 1)。此外,组装的对称和非对称电池的高能密度分别为17 W H Kg 1和45.08 W H Kg 1,分别为153 W kg 1和980 W kg 1的功率密度,以及在15,000 000和3000 cycles之后,高循环稳定性分别为86%和88.5%。
摘要:本评论文章收集了最新的热塞和热塑性聚合物的回收技术。有关现有实验程序及其有效性的结果。对于热固性聚合物而言,综述主要集中于纤维增强的聚合物复合材料,重点是基于环氧树脂的系统和碳/玻璃纤维作为增强型,因为其寿命终止管理的环境关注。热过程(流化床,热解)和化学过程(不同类型的溶剂分解)。分析了最新的合并过程(微波炉,蒸汽和超声辅助技术)和非凡的回收尝试(电化学,生物学和带有离子液体)。导致材料降级的机械回收被排除在外。的见解也是针对迄今为止为纤维重复使用的升级方法提供的。至于热塑性聚合物,最常见的聚合物矩阵的最先进的回收方法以及适当的添加剂用于矩阵升级。机械,化学和酶促回收过程被描述了。使用纤维增强的热塑性复合材料是非常新的,因此,提出了最新成就。借助上述所有信息,这项广泛的审查可以作为教育目的的指南,针对聚合物回收的学生和技术人员。
这些一维碳纳米材料包括单壁和多壁碳纳米管(CNT)、带状和板状碳纳米纤维、竹状碳纳米管、杯状堆叠碳纳米纤维等。[7–10] 一维材料广泛应用于复合材料、涂层、传感器、电化学储能和电催化剂,利用其强度、导电性、低密度、宽带电磁吸收、高表面积和化学稳定性。[11–14] 由于其广泛的用途和科学兴趣,找到合成一维碳材料的新方法仍然至关重要。形成一维碳材料的大多数合成策略,包括电弧放电、激光烧蚀、化学气相沉积、等离子炬和高分压一氧化碳,都涉及在催化金属表面移动原料中的碳原子,然后碳原子生长成石墨一维形貌。 [15] 当前的这些方法通常会生成需要分离的一维材料和无定形碳的混合物,而一维材料的合成通常存在生产率低(< 1 gh −1 )的问题。[16–18]
1 ,波兰2-093华沙的卢德维卡·巴斯图拉大学1街2号,波兰2 - 02-093波兰技术研究所,波兰科学学院,Pawinskiego 5B街,5B街5B街,02-106 Warsaw,Warsaw,Warsaw,波兰3号,波兰,波兰33 wyspianskiego 27,50-370波兰弗罗克瓦劳4物理学学院,华沙大学,卢德维卡·巴斯德拉(Ludwika Pasteura)5,02-093华沙,波兰5,波兰5化学技术和工程学院,科学与技术大学,科学与技术大学,Semarinyjna 3,85-326 bydgoszccscc, magdalena.warczak@pbs.edu.pl(M.W。) 6波兰科学学院物理化学研究所,Kasprzaka 44/52,01-224波兰华沙 *通信:mosial@ippt.pan.pl(M.O. ) ); aprego@ippt.pan.pl(A.P.) †这些作者为这项工作做出了同样的贡献。,波兰2-093华沙的卢德维卡·巴斯图拉大学1街2号,波兰2 - 02-093波兰技术研究所,波兰科学学院,Pawinskiego 5B街,5B街5B街,02-106 Warsaw,Warsaw,Warsaw,波兰3号,波兰,波兰33 wyspianskiego 27,50-370波兰弗罗克瓦劳4物理学学院,华沙大学,卢德维卡·巴斯德拉(Ludwika Pasteura)5,02-093华沙,波兰5,波兰5化学技术和工程学院,科学与技术大学,科学与技术大学,Semarinyjna 3,85-326 bydgoszccscc, magdalena.warczak@pbs.edu.pl(M.W。) 6波兰科学学院物理化学研究所,Kasprzaka 44/52,01-224波兰华沙 *通信:mosial@ippt.pan.pl(M.O. ) ); aprego@ippt.pan.pl(A.P.) †这些作者为这项工作做出了同样的贡献。,波兰2-093华沙的卢德维卡·巴斯图拉大学1街2号,波兰2 - 02-093波兰技术研究所,波兰科学学院,Pawinskiego 5B街,5B街5B街,02-106 Warsaw,Warsaw,Warsaw,波兰3号,波兰,波兰33 wyspianskiego 27,50-370波兰弗罗克瓦劳4物理学学院,华沙大学,卢德维卡·巴斯德拉(Ludwika Pasteura)5,02-093华沙,波兰5,波兰5化学技术和工程学院,科学与技术大学,科学与技术大学,Semarinyjna 3,85-326 bydgoszccscc, magdalena.warczak@pbs.edu.pl(M.W。) 6波兰科学学院物理化学研究所,Kasprzaka 44/52,01-224波兰华沙 *通信:mosial@ippt.pan.pl(M.O. ) ); aprego@ippt.pan.pl(A.P.) †这些作者为这项工作做出了同样的贡献。,波兰2-093华沙的卢德维卡·巴斯图拉大学1街2号,波兰2 - 02-093波兰技术研究所,波兰科学学院,Pawinskiego 5B街,5B街5B街,02-106 Warsaw,Warsaw,Warsaw,波兰3号,波兰,波兰33 wyspianskiego 27,50-370波兰弗罗克瓦劳4物理学学院,华沙大学,卢德维卡·巴斯德拉(Ludwika Pasteura)5,02-093华沙,波兰5,波兰5化学技术和工程学院,科学与技术大学,科学与技术大学,Semarinyjna 3,85-326 bydgoszccscc, magdalena.warczak@pbs.edu.pl(M.W。) 6波兰科学学院物理化学研究所,Kasprzaka 44/52,01-224波兰华沙 *通信:mosial@ippt.pan.pl(M.O. ) ); aprego@ippt.pan.pl(A.P.) †这些作者为这项工作做出了同样的贡献。,波兰2-093华沙的卢德维卡·巴斯图拉大学1街2号,波兰2 - 02-093波兰技术研究所,波兰科学学院,Pawinskiego 5B街,5B街5B街,02-106 Warsaw,Warsaw,Warsaw,波兰3号,波兰,波兰33 wyspianskiego 27,50-370波兰弗罗克瓦劳4物理学学院,华沙大学,卢德维卡·巴斯德拉(Ludwika Pasteura)5,02-093华沙,波兰5,波兰5化学技术和工程学院,科学与技术大学,科学与技术大学,Semarinyjna 3,85-326 bydgoszccscc, magdalena.warczak@pbs.edu.pl(M.W。) 6波兰科学学院物理化学研究所,Kasprzaka 44/52,01-224波兰华沙 *通信:mosial@ippt.pan.pl(M.O. ) ); aprego@ippt.pan.pl(A.P.) †这些作者为这项工作做出了同样的贡献。,波兰2-093华沙的卢德维卡·巴斯图拉大学1街2号,波兰2 - 02-093波兰技术研究所,波兰科学学院,Pawinskiego 5B街,5B街5B街,02-106 Warsaw,Warsaw,Warsaw,波兰3号,波兰,波兰33 wyspianskiego 27,50-370波兰弗罗克瓦劳4物理学学院,华沙大学,卢德维卡·巴斯德拉(Ludwika Pasteura)5,02-093华沙,波兰5,波兰5化学技术和工程学院,科学与技术大学,科学与技术大学,Semarinyjna 3,85-326 bydgoszccscc, magdalena.warczak@pbs.edu.pl(M.W。)6波兰科学学院物理化学研究所,Kasprzaka 44/52,01-224波兰华沙 *通信:mosial@ippt.pan.pl(M.O. ) ); aprego@ippt.pan.pl(A.P.) †这些作者为这项工作做出了同样的贡献。6波兰科学学院物理化学研究所,Kasprzaka 44/52,01-224波兰华沙 *通信:mosial@ippt.pan.pl(M.O.); aprego@ippt.pan.pl(A.P.)†这些作者为这项工作做出了同样的贡献。
一旦达到寿命终止(EOL),预计可再生能源(PVS)面板将大量采用可再生能源(PVS)面板。尽管具有最高的体现能量,但呈现的光伏回收却忽略了PV细胞中发现的高纯度硅。在此,开发了一种可扩展且低的能量工艺,以通过避免能源密集型高温过程的过程从EOL太阳能电池板中恢复原始的硅。提取的硅被升级,形成与基于货运硅相当的性能的锂离子电池阳极。阳极在200个周期后保持87.5%的能力,同时保持高库仑效率(> 99%)为0.5 a g -1充电率。这个简单可扩展的过程将EOL - 极性面板升级为高价值的基于硅的阳极可以缩小净零废物经济性的差距。
分子结构学的本质在于通过合理利用非共价力来定制设计和构建分子组装,以构建具有新特性和功能的理想结构。这种设计非共价系统的概念使我们能够构建用于生物和非生物应用的功能结构,同时加强我们对受控分子组装技术的理解。在这种情况下,生物分子或具有内置分子识别信息的仿生辅助物可以指导功能模块单元的受控分子组装,以构建纳米、微和宏观结构。环二肽 (CDP) 是环肽的最简单形式,由于具有众多组装和功能特性,可以作为分子构建块设计中的功能核心和辅助物。CDP 是主要的副产品,人们一直在努力抑制或防止肽合成过程中的副产品形成。在我们的实验室中,我们承担了将 CDP 升级为具有仿生和生物医学应用的主流产品的任务,这被称为 CDP 结构学。在本次演讲中,我将介绍 CDP 架构及其潜在应用。