摘要:本评论文章收集了最新的热塞和热塑性聚合物的回收技术。有关现有实验程序及其有效性的结果。对于热固性聚合物而言,综述主要集中于纤维增强的聚合物复合材料,重点是基于环氧树脂的系统和碳/玻璃纤维作为增强型,因为其寿命终止管理的环境关注。热过程(流化床,热解)和化学过程(不同类型的溶剂分解)。分析了最新的合并过程(微波炉,蒸汽和超声辅助技术)和非凡的回收尝试(电化学,生物学和带有离子液体)。导致材料降级的机械回收被排除在外。的见解也是针对迄今为止为纤维重复使用的升级方法提供的。至于热塑性聚合物,最常见的聚合物矩阵的最先进的回收方法以及适当的添加剂用于矩阵升级。机械,化学和酶促回收过程被描述了。使用纤维增强的热塑性复合材料是非常新的,因此,提出了最新成就。借助上述所有信息,这项广泛的审查可以作为教育目的的指南,针对聚合物回收的学生和技术人员。
橄榄油生产会产生大量的果渣,这些果渣通常被丢弃在土壤中,对农业和环境产生不利影响。此外,气候变化加剧了植物病害,并促进了有毒植物化学物质在农业中的使用。然而,橄榄磨坊废料具有作为可重复使用和宝贵的生物资源的巨大潜力。我们使用稀释乙醇(一种环保溶剂)提取了含有短和长寡半乳糖醛酸苷、短阿拉伯寡糖和多糖的级分。获得的提取物引发了拟南芥幼苗中植物先天免疫的关键特征,包括丝裂原活化蛋白激酶 MPK3 和 MPK6 的磷酸化以及防御基因(如 CYP81F2 、 WRKY33 、 WRKY53 和 FRK1 )的上调。值得注意的是,用橄榄果渣提取物对成年拟南芥和番茄植株进行预处理可启动防御反应,增强其对植物病原菌灰葡萄孢和丁香假单胞菌的抵抗力。我们的研究结果强调了在橄榄油生产后期收集的两相橄榄果渣在低成本和可持续的聚糖诱导剂中进行升级再造的机会,有助于减少化学合成农药的使用。
它可以识别,孵化和实现财务解决方案,这些解决方案提供了一系列能够减少当地威胁,产生替代的生计,提高MAR中沿海和海洋保护区的财务可持续性,增长由MAR基金管理的紧急基金,并最终吸引资本来发展珊瑚正投资Fortforlio。在2022年7月开始的第一阶段,Mar+Invest建立了由Mar Fund管理的技术援助设施(MARTAF),由MAR基金和融资设施管理,由New Ventures管理。这两种结构是Mar+Invest的基础,以吸引催化和商业资本到生态区,以通过混合金融来建立Mar Coral Reefs的弹性。现在,在2024年6月至2026年5月的第二阶段中,Mar+Invest将通过支持礁石阳性风险投资并吸引资本来巩固其计划为Mar地区发展蓝色经济部门的计划。
摘要 为确保基于粉末的增材制造技术的经济可行性,粉末回收是一种常见的做法。本文介绍了增材制造中金属粉末的生命周期,研究了粉末制造、粉末使用、粉末降解机制和报废粉末的使用。反复使用导致粉末降解是一个普遍存在的问题;用大量重复使用的粉末生产的部件通常质量较低,最终导致粉末无法用于增材制造。粉末降解取决于许多变量,因此无法确定粉末的最终使用寿命。确定粉末质量的最准确方法是使用这些粉末生产和分析部件。文献中以前没有发现降解粉末的用途,因此有必要研究防止粉末浪费的潜在解决方案。在其他减少浪费的解决方案中,等离子球化被认为是一种有前途的方法,可以避免约 12.5% 的粉末处理,从报废粉末中产生类似于原始粉末的颗粒。将报废粉末返还给供应商进行再循环利用可能是减少行业浪费的唯一经济可行的解决方案。本文汇编的研究旨在使增材制造用户能够对粉末再循环利用进行进一步的研究和开发。
一旦达到寿命终止(EOL),预计可再生能源(PVS)面板将大量采用可再生能源(PVS)面板。尽管具有最高的体现能量,但呈现的光伏回收却忽略了PV细胞中发现的高纯度硅。在此,开发了一种可扩展且低的能量工艺,以通过避免能源密集型高温过程的过程从EOL太阳能电池板中恢复原始的硅。提取的硅被升级,形成与基于货运硅相当的性能的锂离子电池阳极。阳极在200个周期后保持87.5%的能力,同时保持高库仑效率(> 99%)为0.5 a g -1充电率。这个简单可扩展的过程将EOL - 极性面板升级为高价值的基于硅的阳极可以缩小净零废物经济性的差距。
1 ,波兰2-093华沙的卢德维卡·巴斯图拉大学1街2号,波兰2 - 02-093波兰技术研究所,波兰科学学院,Pawinskiego 5B街,5B街5B街,02-106 Warsaw,Warsaw,Warsaw,波兰3号,波兰,波兰33 wyspianskiego 27,50-370波兰弗罗克瓦劳4物理学学院,华沙大学,卢德维卡·巴斯德拉(Ludwika Pasteura)5,02-093华沙,波兰5,波兰5化学技术和工程学院,科学与技术大学,科学与技术大学,Semarinyjna 3,85-326 bydgoszccscc, magdalena.warczak@pbs.edu.pl(M.W。) 6波兰科学学院物理化学研究所,Kasprzaka 44/52,01-224波兰华沙 *通信:mosial@ippt.pan.pl(M.O. ) ); aprego@ippt.pan.pl(A.P.) †这些作者为这项工作做出了同样的贡献。,波兰2-093华沙的卢德维卡·巴斯图拉大学1街2号,波兰2 - 02-093波兰技术研究所,波兰科学学院,Pawinskiego 5B街,5B街5B街,02-106 Warsaw,Warsaw,Warsaw,波兰3号,波兰,波兰33 wyspianskiego 27,50-370波兰弗罗克瓦劳4物理学学院,华沙大学,卢德维卡·巴斯德拉(Ludwika Pasteura)5,02-093华沙,波兰5,波兰5化学技术和工程学院,科学与技术大学,科学与技术大学,Semarinyjna 3,85-326 bydgoszccscc, magdalena.warczak@pbs.edu.pl(M.W。) 6波兰科学学院物理化学研究所,Kasprzaka 44/52,01-224波兰华沙 *通信:mosial@ippt.pan.pl(M.O. ) ); aprego@ippt.pan.pl(A.P.) †这些作者为这项工作做出了同样的贡献。,波兰2-093华沙的卢德维卡·巴斯图拉大学1街2号,波兰2 - 02-093波兰技术研究所,波兰科学学院,Pawinskiego 5B街,5B街5B街,02-106 Warsaw,Warsaw,Warsaw,波兰3号,波兰,波兰33 wyspianskiego 27,50-370波兰弗罗克瓦劳4物理学学院,华沙大学,卢德维卡·巴斯德拉(Ludwika Pasteura)5,02-093华沙,波兰5,波兰5化学技术和工程学院,科学与技术大学,科学与技术大学,Semarinyjna 3,85-326 bydgoszccscc, magdalena.warczak@pbs.edu.pl(M.W。) 6波兰科学学院物理化学研究所,Kasprzaka 44/52,01-224波兰华沙 *通信:mosial@ippt.pan.pl(M.O. ) ); aprego@ippt.pan.pl(A.P.) †这些作者为这项工作做出了同样的贡献。,波兰2-093华沙的卢德维卡·巴斯图拉大学1街2号,波兰2 - 02-093波兰技术研究所,波兰科学学院,Pawinskiego 5B街,5B街5B街,02-106 Warsaw,Warsaw,Warsaw,波兰3号,波兰,波兰33 wyspianskiego 27,50-370波兰弗罗克瓦劳4物理学学院,华沙大学,卢德维卡·巴斯德拉(Ludwika Pasteura)5,02-093华沙,波兰5,波兰5化学技术和工程学院,科学与技术大学,科学与技术大学,Semarinyjna 3,85-326 bydgoszccscc, magdalena.warczak@pbs.edu.pl(M.W。) 6波兰科学学院物理化学研究所,Kasprzaka 44/52,01-224波兰华沙 *通信:mosial@ippt.pan.pl(M.O. ) ); aprego@ippt.pan.pl(A.P.) †这些作者为这项工作做出了同样的贡献。,波兰2-093华沙的卢德维卡·巴斯图拉大学1街2号,波兰2 - 02-093波兰技术研究所,波兰科学学院,Pawinskiego 5B街,5B街5B街,02-106 Warsaw,Warsaw,Warsaw,波兰3号,波兰,波兰33 wyspianskiego 27,50-370波兰弗罗克瓦劳4物理学学院,华沙大学,卢德维卡·巴斯德拉(Ludwika Pasteura)5,02-093华沙,波兰5,波兰5化学技术和工程学院,科学与技术大学,科学与技术大学,Semarinyjna 3,85-326 bydgoszccscc, magdalena.warczak@pbs.edu.pl(M.W。) 6波兰科学学院物理化学研究所,Kasprzaka 44/52,01-224波兰华沙 *通信:mosial@ippt.pan.pl(M.O. ) ); aprego@ippt.pan.pl(A.P.) †这些作者为这项工作做出了同样的贡献。,波兰2-093华沙的卢德维卡·巴斯图拉大学1街2号,波兰2 - 02-093波兰技术研究所,波兰科学学院,Pawinskiego 5B街,5B街5B街,02-106 Warsaw,Warsaw,Warsaw,波兰3号,波兰,波兰33 wyspianskiego 27,50-370波兰弗罗克瓦劳4物理学学院,华沙大学,卢德维卡·巴斯德拉(Ludwika Pasteura)5,02-093华沙,波兰5,波兰5化学技术和工程学院,科学与技术大学,科学与技术大学,Semarinyjna 3,85-326 bydgoszccscc, magdalena.warczak@pbs.edu.pl(M.W。)6波兰科学学院物理化学研究所,Kasprzaka 44/52,01-224波兰华沙 *通信:mosial@ippt.pan.pl(M.O. ) ); aprego@ippt.pan.pl(A.P.) †这些作者为这项工作做出了同样的贡献。6波兰科学学院物理化学研究所,Kasprzaka 44/52,01-224波兰华沙 *通信:mosial@ippt.pan.pl(M.O.); aprego@ippt.pan.pl(A.P.)†这些作者为这项工作做出了同样的贡献。
本小组汇集了关注“升级再造”的研究人员。我们认为升级再造是一系列物质和文化实践,人们通过这些实践改造材料并重新想象材料存在的环境和关系。升级再造被认为不同于回收,因为从业者调动了一定程度的创造力和技术创新,为无用的东西注入了新的价值和美感。然而,对什么算作附加值(升级再造产品的质量差异)的评估从来都不是纯粹技术性的,也不是中立的判断。相反,它们涉及对材料转化应该带来什么的更大想象,例如解放效果、公平的劳动条件或环境改善。小组成员受邀展示升级再造如何通过材料和文化的属性展开
摘要将废物塑料化学升级为高价值增添的产品,例如单体,燃料或细化学物质是减轻大规模终止塑料的不利影响的有希望的策略。poly(Bisphenol A碳酸盐)(BPA-PC)由于其出色的整体性能而脱颖而出。但是,其耐用性和潜在的环境毒性使得其回收势在必行。尽管在我们的审查之前已经进行了许多有关塑料退化的评论,但由于该领域的快速发展,塑料退化的进度需要不断更新和汇总。同时,BPA-PC作为重要的工程塑料,先前的评论仅着眼于将其去聚合到单体中,而错过了其进一步转换为最终化学物质。在这篇简洁的综述中,我们总结了BPA-PC化学升级到有价值的化学物质的最新发展,并强调了各种催化剂和试剂的作用。一些最具使用的化学升级策略,例如酗酒,氨基溶解和
正在为新的和可再生能源进行抽象的广泛研究。氢正在受到特殊关注,并且对包括天然气,煤炭,废物和生物质在内的升级能源进行研究。催化反应通常对于从这些资源中产生高价值化学物质至关重要。水– gas偏移(WGS,CO + H 2 O→CO 2 + H 2)反应是提升各种类型的合成气体的最有用的催化途径之一。当前,WGS反应的应用范围已进一步扩展到废物,生物质和煤炭衍生的合成气体的升级。但是,应通过考虑其特征来仔细定制反应条件和催化剂。在这项研究中,我们专注于WGS反应的反应条件和催化剂,这些反应在过去十年中处理了各种类型的进料气体,以了解发展的进展。基于分类(通过进料气体的类型),我们仔细比较了测试的催化剂,容量,温度,进料气体成分,蒸汽与碳比率和催化剂性能。我们可以洞悉每种类型的进料气源中面向目标WGS反应的当前研究趋势和观点,这可以为定制提供线索。
• 升级再造消费后的 EVOH/PE 废弃物。• 多层结构回收 • 基于聚烯烃 (LDPE、PP、HDPE) 和工程塑料 (EVOH),• 广泛用于柔性食品包装,• EVOH / PE 废弃物混合物不相溶,• 可回收性和可加工性差(相容剂之前)。
