了解过度参数化模型的成功似乎具有挑战性。部分,由于该过程的违反直觉。共同的智慧表明,在学习中,必须对问题的问题有一定的良好偏见,并且在学习时,我们需要将自己限制在不能过分贴上数据的模型类别中。这种直觉是通过经典学习模型(例如PAC LearningValiant [1984]以及回归Alon等人的理由证明的。[1997]。在这些古典模型中,甚至可以证明Vapnik和Chervonenkis [2015],Blumer等。[1989],学习需要比学习类别的能力更多的示例,并且避免插值对于概括是必要的。这些结果是在与分布无关的设置中获得的,其中人们假定数据上的最差分布。
可穿戴机器人上肢矫形器 (ULO) 是辅助或增强用户上肢功能的有前途的工具。虽然这些设备的功能不断增加,但对用户控制可用自由度的意图的稳健和可靠检测仍然是一项重大挑战,也是接受的障碍。作为设备和用户之间的信息接口,意图检测策略 (IDS) 对整个设备的可用性具有至关重要的影响。然而,这方面及其对设备可用性的影响很少根据 ULO 的使用环境进行评估。进行了范围界定文献综述,以确定已通过人类参与者评估的应用于 ULO 的非侵入式 IDS,特别关注与功能和可用性相关的评估方法和发现及其在日常生活中特定使用环境的适用性。共确定了 93 项研究,描述了 29 种不同的 IDS,并根据四级分类方案进行了总结和分类。与所述 IDS 相关的主要用户输入信号是肌电图 (35.6%),其次是手动触发器,例如按钮、触摸屏或操纵杆 (16.7%),以及上肢节段的残余运动产生的等长力 (15.1%)。我们确定并讨论了 IDS 在特定使用环境中的优缺点,并强调了在选择最佳 IDS 时性能和复杂性之间的权衡。通过调查评估实践来研究 IDS 的可用性,纳入的研究表明,主要评估了与有效性或效率相关的客观和定量的可用性属性。此外,它强调了缺乏系统的方法来确定 IDS 的可用性是否足够高以适合用于日常生活应用。这项工作强调了针对用户和应用程序选择和评估用于 ULO 的非侵入式 IDS 的重要性。对于该领域的技术开发人员,它进一步提供了有关IDS的选择过程以及相应评估协议的设计的建议。
原始文章对基于Tele的监督进行为期8周的可行性研究,以对上肢运动性能和功能能力的剧本练习,Subhasish Chatterjee。Abstrac t Background Telerehabilitation,使偏远地区的患者更容易获得康复,并且在运输挑战方面已被广泛实施,以恢复中风。随着通信技术的发展,Telerehabilitation正在成为一个更可行的选择。仍然未知,但是,这种分娩策略在中风患者的康复方面有多成功。在此前瞻性,单组,治疗性试验中的材料和方法,根据选择标准招募了12例患者。在基线签署了签署的患者同意书后,对患者进行了身体评估,并熟悉患者。患者通过现场会议,每周3天接受了基于电视的监督,每周3天,每周3天进行30分钟的监督。在切换任务之前,有30秒的休息时间。分别在基线,第4周和8周干预的基线时采取了结果指标,FMA UE和中套。计算描述性统计数据以获取基线时的人口统计信息和结果度量。为了评估数据的正态性,采用了Shapiro-Wilk测试。由于发现数据是正态分布的,因此进行了重复测量ANOVA和事后分析,以评估小组内基线,第4周和第8周的数据。Bonferroni校正用于解决多个比较。p值小于0.05被认为表明统计学上的显着差异。结果每个结果度量都表明有很大的改善(p <0.05)。根据组内分析,在FMA UE和Mesupes(p <0.001)中观察到了明显的区别。结论基于Tele的以任务为导向的练习有效地改善了中风患者的上肢运动性能和功能能力。
副本为:Hon。Susan C. Lee,国务卿Michael W. Lore,Esq。 1-888-874-0013(免费电话);传真:(410)974-5190; tty:(410)333-3098电子邮件:dlmdsos_sos@maryland.gov web:http://sos.maryland.gov/ hon。Teny Hamilton Hoyer(民主党),美国代表,第五国会乔治县王子县:美国地区法院,6500 Cherrywood Lane,Suite 310,Greenbelt,MD 20770(301)474-0119;传真:(301)474-4697 HON。 州长韦斯·摩尔·马里兰州州长100州圈安纳波利斯,马里兰州21401-1925 HON。 Angela D. Ashbrooks乔治王子县执行韦恩·K·库里管理大楼1301 McCormick Drive Largo,MD 20774Teny Hamilton Hoyer(民主党),美国代表,第五国会乔治县王子县:美国地区法院,6500 Cherrywood Lane,Suite 310,Greenbelt,MD 20770(301)474-0119;传真:(301)474-4697 HON。州长韦斯·摩尔·马里兰州州长100州圈安纳波利斯,马里兰州21401-1925 HON。Angela D. Ashbrooks乔治王子县执行韦恩·K·库里管理大楼1301 McCormick Drive Largo,MD 20774
图 1:使用国际 10-20 系统从 (a) 矢状面和 (b) 轴平面 (c) 头皮角度看到的 64 个电极配置表示。注意:A= 耳垂,C = 中央,Pg = 鼻咽,P = 顶叶,F = 额叶,Fp = 额极和 O = 枕叶。
NJDOE 要求:2020 年 4 月,墨菲州长发布了一项行政命令,成为 PL2020,c.27。该法律规定,在因公共卫生原因关闭学区的情况下,教学仍可继续进行,以便 LEA 可以利用虚拟或远程教学来满足 NJSA 18A:7F-9 规定的 180 天要求。为了提供透明度并确保新泽西州学生继续接受高质量、基于标准的教学,每个学区、特许学校、文艺复兴学校项目和经批准的残疾学生私立学校 (APSSD) 必须每年向新泽西州教育专员提交其虚拟或远程教学的拟议计划(计划)。该计划将在 LEA 因宣布进入紧急状态、宣布公共卫生紧急情况或相关卫生机构或官员指示实施公共卫生相关关闭而关闭超过三个连续上课日期间实施。
我们描述了肾脏骨盆的高级尿路上皮癌(UC)具有神经内分泌分化的罕见情况,特别是小细胞癌(SCC)成分。一名70岁的男性与Frank Hematuria一起进行了彻底的临床检查,包括计算机断层扫描(CT)扫描,显示出较大的增强对比的阻塞性右肾脏肿块。质量在显微镜下分析时,显示了两个不同的成分:高级尿路癌和SCC。免疫组织化学分析证实了主要的双重形态亚型,并排除了转移来源。肾骨盆的混合SCC和UC是极为罕见的诊断,这些肿瘤的分期很困难,强调了综合诊断方法的重要性,以准确表征复杂的肾肿瘤。
背景:中风是最常见的脑血管疾病之一,通常影响60岁及60岁以上的人。它导致各种需要运动和认知康复的残疾。中风后康复对恢复至关重要,特别是对于上肢障碍,这会影响大约80%的中风幸存者。常规康复经常面临诸如成本,可及性和患者依从性之类的障碍。相比之下,EHealth Technologies通过提供可访问,具有成本效益和引人入胜的康复解决方案提供了有希望的选择。目的:尽管许多系统的评论探讨了基于技术的康复的各个方面,用于中暑上肢恢复,但显然缺乏这些发现的全面综合。此差距提出了挑战,这主要是由于关注特定技术,这使理解这些干预措施的整体有效性变得复杂。因此,临床医生和研究人员可能会发现很难整体评估该领域,这可能会阻碍临床实践中明智的决策。本评论综合了从系统评价中评估eHealth技术干预措施对中风后的上肢恢复的有效性的证据。进行了两个主要问题:(1)基于EHEADH技术的疗法是否比中风康复的常规疗法更有效?(2)基于低成本技术的康复的主要临床考虑因素是什么?方法:使用基于人群,干预,比较,结果和研究设计(PICOS)框架的预定义纳入标准,在PubMed,PubMed,Scipus,Scopus,Embase和Google Scholar中进行了全面的文献搜索。包括英文发表的无日期限制的系统评价。Prisma(用于系统评价和荟萃分析的首选报告项目)流程图指导研究选择。使用多个系统评价(AMSTAR 2)标准评估方法学质量。结果:总共筛选了1792个记录,从而在2019年至2023年之间发表了7项系统评价。这些评论涵盖了95项研究,涉及2995名参与者,急性,亚急性和慢性中风阶段平均年龄为58.8岁。干预措施包括Telerebilitation,移动健康(MHealth)应用程序,增强现实(AR),虚拟现实(VR),可穿戴设备和Exergames。与常规疗法结合使用AR和VR表现出潜在的好处(例如,AR显示上肢功能的显着改善,标准化的平均差异为0.657; P <.001),而独立有效性的证据尚未确定,由于在研究设计,干预方案和结果测量中,由于异质性而导致异质性。由于方法上的局限性,大多数评论被评为质量较低。结论:EHealth Technologies有望通过在提供引人入胜的干预措施时解决诸如成本和可及性之类的障碍,以增强上肢康复后。然而,该领域仍然没有足够的证据来建立明确的疗效。未来的研究应集中于标准化方案,优化诸如剂量和任务特异性之类的神经康复原则,并改善方法论严格,以更好地评估这些干预措施的长期影响。
降水在有效管理水资源和维持储层水位中起着至关重要的作用。然而,气候变化发生了显着改变的降水模式,导致了极端的水文事件,例如干旱和洪水,这些事件具有深远的社会经济和环境影响。本研究的重点是使用机器学习模型预测上印度河盆地(UIB)中的降水事件。在这项研究中,采用了三种广泛使用的机器学习算法支持向量机(SVM),K-Nearest邻居(KNN)和随机森林(RF),以预测UIB中的降水事件。数据集分为培训(80%)和测试(20%)子集进行模型评估。在测试的算法中,KNN表现出最佳的预测性能,得出的平均绝对误差(MAE)为2.662,根平均平方误差(RMSE)为16.3,R²得分为0.879,总准确度为83.16%。结果表明,KNN算法是UIB中降水预测的最有效的机器学习模型。这项研究的结果有助于改善预警系统,并在面对气候变化和极端天气事件的情况下促进有效的水资源管理。
海洋与地球科学,南安普敦大学,南安普敦,英国B海洋科学学院 Sciences, University of California, Los Angeles, Los Angeles, California f Department of Geosciences, Tel Aviv University, Ramat Aviv, Israel g Woods Hole Oceanographic Institution, Woods Hole, Massachusetts h National Oceanography Centre, Southampton, United Kingdom i British Antarctic Survey, Cambridge, United Kingdom j NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey k Program in Atmospheric和海洋科学,普林斯顿大学,新泽西州普林斯顿大学