前排,从左到右:Marc Delassus,Sle Valois Sud Oise; Ludovic佳能SLE HighDeûle; Pascal DeGrelle Sle Valenciennes Sambre Avesnois; Dominique Raman Sle Lille; Sleme somme est的监督委员会的Mathilde Roy副主席; Patrice Duvauchelle的工作人员;尼古拉斯·德尔考(Nicolas Delcourt)雇员理事会代表; Jean-Claude Josinski Sle Hauts de l'Aisne; Karine Iasoni,Sle douaisisCambrésis; SLE SAINT-AMER CALAIS监事会的StéphanePottez副主席; Rachel Monteiro,Sle Arras LensLiévin; Didier Pignat,Sle给du Beauvaisis付费;斯利法恩·梅莱特(StéphaneMaillet),萨尔·海上; Nathalie Pischedda,SleCompiègne这两个山谷; Xavier Veracx SleBéthunebruay。第二行,从左到右:斯特凡·莱德斯(StéphaneLedez),萨尔·法兰德斯(Sle Flanders);克里斯汀·贝恩(Christine Beun),萨尔·法兰德斯(Sle Flanders)大都会; Delphine Poix,雇用的代表;劳伦斯·莱杜克斯(Laurence Ledoux),SLE付费D'Opale;西尔万·罗伯特(Sylvain Robert),短期和互惠代表性结构; Sle FlandreMétropolises监事会主席Philippe Lamblin。照片中缺少:Alain Herreng,Sle Amiens Somme Est;阿斯特里德·莫杜(Astrid Maudu),萨尔·索姆(Sle Somme)大沿岸; Marie-ThérèsePiekacz,Sle Aisne Champenoise; Corinne Wisnietski,Sle Saint-Amand Denain;劳伦特·莱克勒克(Laurent Leclercq)
在神经退行性疾病和衰老中,小胶质细胞,脑免疫细胞获得了疾病相关的小胶质细胞特征,这些特征可能有利于早期疾病状态的组织修复,但是在晚期,在晚期恢复了脑稳态的能力,并保护神经元,并保护神经元,并因细胞死亡而保护神经元。衰老的小胶质细胞表现出与分泌相关的衰老表型,并且代谢受损,而NAD耗竭,该表型在基因组完整性和细胞代谢中起着核心作用。新兴证据强调了衰老和神经退行性疾病中NAD的较低水平,因此Sirtuins的活性受损。在这项研究中,我们研究了小胶质细胞中衰老过程中发生的变化,开发了一种慢性暴露(长达30天)的体外模型至高铁浓度。最初,铁处理会诱导小胶质细胞增殖,增强吞噬作用,并提高NAD水平表明小胶质细胞激活。经过30天的治疗后,小胶质细胞获得了一种胶状表型,其特征是以增殖停滞,吞噬作用降低,SASP标记的上调,EVS产生显着增加。生化,转录组和代谢组分析显示,铁处理的小胶质细胞中NAD和NADPH含量的水平降低,与CD38的表达增加(主要NAD摄入酶)的表达增加。此外,与对照小胶质细胞相比,在老年/衰老细胞中下调的Sirtuin 6的水平和活性大大降低。。衰老的小胶质细胞与健康的小胶质细胞诱导的健康细胞中的衰老特征共培养,这表明Saßgal和P21阳性细胞的显着增加以及NAD水平降低了。结论是NAD的提升可能代表了一种有用的策略,可以抵消衰老和衰老对健康小胶质细胞的传播。
关于当前NISQ设备上的量子计算,包括嘈杂的Qubits和需要不可忽略的经典计算作为算法的一部分,具有实用性,并将为科学和工业应用提供有关传统计算方面的优势。在该立场论文中,我们认为,尽管现实世界中的NISQ量子量尚未超过其经典对应物,但战略方法可用于促进工业和科学应用的进步。我们已经确定了三种关键策略,以指导NISQ计算实现实用且有用的实现。首先,优先考虑“杀手级应用程序”的识别是一个关键点。证明NISQ设备具有独特功能的应用程序可以催化更广泛的发展。我们建议将重点放在固有的量子上,例如将量子化学和材料科学作为有前途的领域指向。这些领域有可能表现出益处,为其他应用程序设定基准。其次,将AI和深度学习方法整合到NISQ计算中是一种有前途的方法。诸如量子物理信息的神经网络和可区分量子电路(DQC)之类的示例证明了量子计算与AI之间的协同作用。最后,认识到NISQ计算的跨学科性质,我们主张采用共同设计方法。实现经典计算和量子计算之间的协同作用需要在共同设计的量子应用程序,算法和编程环境以及
有了定义,让我们回顾一下人工智能的起源。几个世纪以来,人类一直对创造生物(包括人类)的代表任务很感兴趣。这些代表通常被称为自动机,它们可以追溯到中世纪,甚至可能更早。在 19 世纪和 20 世纪初,自动机的受欢迎程度达到了顶峰。从可以翻筋斗的熊到可以看到另一个自动机一半的魔术师,再到在金笼子里唱歌的夜莺,这些派对装饰品越来越复杂,也许可以被视为人工智能的先驱。或者更准确地说,我们可以认为它们是控制论领域的先驱,控制论是一门科学研究领域,探索动物和机器中的控制和通信。控制论研究由 Norbert Viner 在 20 世纪中叶发起,至今仍是机器人功能的核心。这些控制论机器人的前身是机械的,而不是智能的,但它们的创造影响了机器人领域的发展。即使在今天,也并非所有机器人都是智能的;有些机器人只是通过快速完成机械的、重复的任务来节省劳动力。然而,许多机器人也是智能的,这是人类长期以来渴望创造能够以智能方式行事的物体的一部分。我们也喜欢讲述关于行为智能的物体的故事,机器人长期以来一直是电影制作行业的最爱。谁不能不被《星球大战》中的 C-3PO、2 等机器人角色所喜爱呢?
国际海事组织 (IMO) 决议 MSC.215(82) 通过的《保护涂层性能标准》(PSPC) 于 2008 年 7 月 1 日(船舶新建合同日期)起成为强制性标准,适用于总吨位不低于 500 吨的所有类型船舶的专用海水压载舱以及长度为 150 米及以上的散货船的双舷侧空间。此外,最近通过的 IMO 决议 MSC.288(87) 提出了一项新的 PSPC 要求,将于 2013 年 1 月 1 日(船舶新建合同日期)对载重量不低于 5,000 吨的油轮的原油舱生效。两项 PSPC 标准都规定了 15 年的目标涂层使用寿命,在此期间涂层应从首次涂层应用开始保持良好状态。
全球气候变化和全球变暖,加上人口增长,引发了人们对可持续粮食供应和生物能源需求的担忧。高粱 [ Sorghum bicolor (L.) Moench] 在全球谷物产量中排名第五;它是一种 C 4 作物,比其他主要谷物具有更高的抗逆性,并且用途广泛,例如谷物、饲料和生物质。因此,高粱作为实现可持续发展目标 (SDG) 的有前途的作物而备受关注。此外,高粱是 C 4 禾本科植物的合适遗传模型,因为它具有高度的形态多样性和与其他 C 4 禾本科植物相比相对较小的基因组大小。虽然与水稻和玉米等其他作物相比,高粱育种和遗传研究落后,但最近的研究进展已经确定了控制高粱重要农艺性状的几个基因和许多数量性状位点 (QTL)。本综述概述了可能对高粱育种用于谷物和生物质利用有用的性状和遗传信息,重点关注形态发生方面。
摘要 — 准确预测元件的剩余使用寿命 (RUL) 是电子电路中的主要关注点。基于 RUL 的健康诊断在确定设备故障时间方面发挥着重要作用,可作为工业应用中的预警。本文提出了一种基于长短期记忆 (LSTM) 的回归模型,利用设备最基本的提取电气特征来预测环形振荡器 (RO) 电路的 RUL。LSTM 网络能够捕获时间序列数据中的时间依赖性并消除传统循环神经网络 (RNN) 中遇到的梯度消失问题。从 Cadence 模拟中,利用 22 nm CMOS 技术库,已经证明 RO 频率退化主要取决于三个主要因素,包括工作温度、电压以及最重要的设备老化参数。结果表明,13 和 21 阶段的 RUL 预测结果中超过 90% 的案例受电源电压变化限制,变化范围为 0.7 V 至 0.9 V,预测偏差最小为 2 天至 6 天。关键词:老化、剩余使用寿命、机器学习、在线预测、可靠性
摘要。准确估算工业系统中剩余的使用寿命(RUL)对于优化维护策略和规定资产寿命至关重要。数据驱动的RUL模型利用机器学习(ML)算法从操作数据中提取模式,从而在捕获复杂关系中进行例外。尽管RUL预后模型的进步发展,但机器学习算法的黑盒性质仍为工业用户带来挑战,阻碍了信任和采用。明显的人工智能(XAI)方法通过使复杂的模型透明和可解释来提供有希望的解决方案。本文着重于应用XAI方法来增强对RUL预后的机器学习模型的信任。我们强调对解释机制的定量评估,包括一致性和鲁棒性等指标。我们的研究有助于制定更可信赖和可靠的预测维护策略。我们评估了XAI方法的规定RUL模型,该模型应用于工业型数据的现实情况。我们的发现旨在为工业从业人员提供宝贵的见解,并指导他们选择RUL预后技术。
国际海事组织 (IMO) 决议 MSC.215(82) 通过的《保护涂层性能标准》(PSPC) 于 2008 年 7 月 1 日(船舶新建合同日期)起成为强制性标准,适用于总吨位不低于 500 吨的所有类型船舶的专用海水压载舱以及长度为 150 米及以上的散货船的双舷侧空间。此外,最近通过的 IMO 决议 MSC.288(87) 产生的一项新的 PSPC 要求将于 2013 年 1 月 1 日(船舶新建合同日期)对载重量不低于 5,000 吨的油轮的原油舱生效。两项 PSPC 标准都规定了 15 年的目标涂层使用寿命,在此期间涂层应从首次涂层应用开始保持良好状态。